三种基于稀疏成像的RCS测量算法思想

本文介绍了三种基于稀疏成像的RCS(雷达散射截面)测量算法。第一种是三维稀疏成像方法,通过脉冲压缩、升采样和三维BP算法获取复图像,然后进行稀疏解求解。第二种方法是近场稀疏成像外推,通过构建稀疏字典,进行数据预处理和稀疏重建,计算目标的远场散射场。第三种方法涉及高分辨成像模型,通过构建字典、设计稀疏观测矩阵,并利用特定的测量路径快速测量RCS。
摘要由CSDN通过智能技术生成

1.基于三维稀疏成像的RCS测量方法

算法思路:
1.先设置初始参数;
2.原始回波数据进行脉冲压缩,得到距离向矩阵
3.对距离向回波数据(脉冲压缩后的数据)进行K倍频域升采样;
3.1 提取距离向数据矩阵的纵向量(z方向);
3.2 采用标准快速傅里叶变换处理纵向量;
3.3 对得到的向量插入零元素;
3.4 对插值后的向量进行标准逆快速傅里叶变换;
3.5 将向量存入规定大小的矩阵中得到升采样后的数据矩阵;
4.计算近场补偿因子
计算当前阵元位置向量和距离历史得到近场补偿因子
5.利用三维BP算法获取三维复图像
将升采样矩阵和近场补偿因子作为三维BP算法的输入得到近场三维复图像;
6.计算基于复图像的初始稀疏解
按照传统的压缩感知求解方法进行迭代求解

2. 基于近场稀疏成像外推的目标RCS测量方法

算法思路:
1.设定近场测量参数;
2.根据参数构建反映目标实际散射特性的稀疏字典;
2.1 将二维近场散射信号数据矩阵和二维成像场景散射系数矩阵重排为一维列向量。将近场散射信号数据采用矩阵表示;
2.2 将二维成像场景位置对应散射中心的单位幅度近场散射信号数据列向量作为稀疏矩阵的列向量构建稀疏矩阵;
3.根据设定的参数检测不同条件下的空暗室和定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值