自适应信号处理基础及应用——DSP学习笔记五

本文介绍了自适应系统的定义、特征以及单输入横向滤波器的形式,重点讨论了均方误差和自适应线性组合器中的权重向量优化。探讨了基于梯度的方法,如牛顿法和梯度下降法(LMS算法),及其在系统辨识、噪声消除和信号增强等领域的应用。
  • 本专栏的图片内容都来自于老师讲课的PPT,本篇博客只是我个人对于上课内容的知识结构分析和梳理。

  • 导论

    • 自适应系统的定义、特征、形式、举例

      • 特征

        • 非自适应系统

          • • 固定参数的设计方法

          • • 假定事先知道了一切可能的输入条件;在这些条件下怎样动作;选择了一个性能准则;进而选择了一个看起来最好的系统

        • 自适应系统

          • 能够自动地适应变化的环境与变化的系统要求

          • • 能够通过训练改变系统结构,以完成特定的滤波或判决任务

          • • 通常不需要精确的系统设计,而是能“自行设计”

          • • 在有限的范围内能够自我检测,适应于一定类型的内部故障

          • • 通常被描述成非线性时变系统

          • • 通常比较复杂、难以分析

      • 一般形式:开环、闭环(无论那种形式,系统的处理器都必须是可调节的)

  • 自适应线性组合器

    • 一般形式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值