AI绘画工具 Stable Diffusion【插画转绘】:建筑 风景 人像照片的插画转绘制作教程,照片秒变插画风格图片!

关于Stable Diffusion 的插画转绘,今天给大家分享一种制作方法。我们先看一下效果图。
在这里插入图片描述

一. 图片转插画的制作方法

本期教程我们将使用AI绘画工具Stable Diffusion,关于SD的安装和入门使用可以看看我的往期入门教程:什么是AI绘画工具Stable Diffusion?如何安装使用?最新版秋枼SD4.9整合包保姆级教程建议收藏!,如需安装包请看下方扫描免费获取哦

【第一步】:大模型的选择

这里推荐使用:helloFlatArt扁平画风(模型下载请看下方扫描免费获取哦)

【第二步】:提示词的编写

正向提示词格式:(Masterpiece),(Best Quality),flat illustration, + 图片信息

图片信息可以通过WD1.4 标签器标签反推。

正向提示词

Prompt:(Masterpiece),(Best Quality),flat illustration,no humans,scenery,outdoors,house,building
提示词:(杰作),(最佳质量),平面插图,无人,风景,户外,房子,建筑

反向提示词

EasyNegativeV2,nsfw,worst quality,low quality,badhandv4,bad-hands-5,

相关参数设置

  • 采样器:DPM++ 2M Karras

  • 采样迭代步数:28

  • 图片宽高:1024*1024 (和需要转绘的原图片保持一致)

  • 提示词引导系数(CFG):7

【第三步】:Loar模型的设置

lora1: 风景扁平插画丨CJ_illustration (Lora下载请看下方扫描免费获取哦)

该lora模型特别适用于自然风景,人文城市等场景。无需触发词,权重建议0.8。0.7或以下影响扁平化,不过风格也还不错。

这里我们将权重设置为0.8。

【第四步】:ControlNet的设置

ControlNet0: Lineart控制模型用于控制画面线条的一致

相关参数设置如下:

  • 控制类型:选择"Lineart(线稿)"

  • 预处理器:lineart_realistic

  • 模型:control_v11p_sd15_lineart

  • 控制权重:0.65

ControlNet1: Depth控制模型用于控制画面元素远近距离一致

相关参数设置如下:

  • 控制类型:选择"Depth(深度)"

  • 预处理器:depth_zoe

  • 模型:control_v11f1p_sd15_depth

  • 控制权重:1

【第五步】图片的生成

点击【生成】按钮,我们来看一下最终生成的图片效果。

在这里插入图片描述

二. 如何固定颜色

上面制作的图片存在一个问题,就是生成图片的颜色和原图片出入比较大。但是这个要看具体的场景,如果我们想维持图片的颜色也是可以的。只需要再添加一个ControlNet单元。

ControlNet单元2: tile控制模型用于控制画面颜色的一致

相关参数设置如下:

  • 控制类型:选择"Tile/Blur(分块/模糊)"

  • 预处理器: tile_colorfix(用于分块固定图片的颜色)

  • 模型:control_v11f1e_sd15_tile

  • 控制权重:0.5 (注意:这里权重一定不要太高)

我们来看一下生成的效果图片。

在这里插入图片描述

我们再来看看其他图片的效果

在这里插入图片描述
在这里插入图片描述

三. 相关说明

(1)使用tile控制模型预处理器tile_colorfix用于固定图片的颜色,这里将控制权重设置为0.5,因为权重过大,整个图片呈现的效果会比较差。但是如果权重设置比较小,图片的颜色就比较难以固定。

总体来说,tile模型在图片转绘中的影响比较大,在使用tile模型的时候我们对ControlNet的参数设置尽量多尝试比较。

(2)个人认为,不固定图片的颜色生成的转绘图片效果比固定图片颜色效果好一些,所以在开始的第一部分主要讲不固定图片颜色的制作方式

(3)对于真人转插画的制作来说,个人觉得固定图片的颜色是很有必要的,否则转绘的效果和原图片的颜色不一致,图片效果会差很多。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
<think>好的,我需要帮助用户找到与Stable Diffusion相关的插件、模型以及使用教程。首先,我需要确认用户提到的SD是否确实指Stable Diffusion,根据提供的引用内容,这应该是正确的。接下来,根据用户提供的引用信息,有几个插件和模型已经被提到,比如ControlNet、本地化中文插件、模型工具包和数据集标签编辑器等。我需要将这些信息整理出来,并补充一些常见的插件和模型,确保覆盖下载、安装和使用教程等方面。 首先,引用[1]提到的是一个本地安装教程和模型应用,引用[2]是关于本地化中文插件的GitHub仓库,引用[3]是ControlNet插件的安装网址,引用[4]是数据集标签编辑器的使用说明。我需要确保每个部分都包含下载链接、安装步骤和基本使用方法,同时参考用户提供的引用来源。 接下来,我需要考虑用户可能需要的问题,比如如何安装插件、推荐哪些模型、如何处理标签等。根据引用内容,用户可能对批量编辑标签感兴趣,所以需要详细说明引用[4]中的方法。同时,ControlNet为重要插件,需要重点介绍其功能和应用场景。 另外,模型下载部分需要推荐几个热门模型,如ChilloutMix和DreamShaper,并指导用户如何安装和使用。可能还需要提到模型管理工具,如引用[2]中的模型工具包,帮助用户更好地管理他们的模型。 在教程资源方面,引用[1]提供了一个5分钟安装教程,可以推荐给新手用户。此外,官方文档和社区论坛也是重要的资源,应该包含在内。 最后,生成的相关问题需要覆盖用户可能进一步询问的方向,比如安装问题、模型选择、标签编辑和高级功能等,确保用户能够找到后续的帮助信息。 现在需要将这些内容组织成结构清晰的回答,分点列出插件、模型、教程,每个部分都包含名称、功能、下载链接和使用说明,并正确标注引用来源。同时,语言要简洁明了,符合中文表达习惯,避免使用Markdown格式,但按照用户的要求使用$...$和$$...$$格式处理数学表达式。不过在这个问题中,数学表达式可能不相关,所以可能不需要使用。不过需要检查是否有提到数学相关内容,但看起来主要是关于Stable Diffusion的插件和模型,因此可能不需要数学格式。但根据用户指令,所有行内数学表达式必须使用$...$,但当前问题中没有数学内容,所以可能不需要处理,但需确保其他格式正确。 总结步骤: 1. 整理插件部分,包括ControlNet、中文本地化、模型工具包、数据集标签编辑器。 2. 模型推荐部分,包括热门模型和安装方法。 3. 教程资源,包括安装教程、官方文档、社区论坛。 4. 生成相关问题,覆盖安装、模型选择、标签处理、高级应用等。 5. 确保每个引用正确标注,如[^1]、[^2]等。 6. 检查是否符合系统级指令,特别是中文回答、引用标识、结构清晰等。</think>### Stable Diffusion 插件与模型推荐及使用教程 #### 一、常用插件推荐 1. **ControlNet** - **功能**:通过添加额外控制条件(如边缘检测、姿态估计)精确控制图像生成[^3]。 - **安装方法**: - 在Stable Diffusion WebUI的“Extensions”选项卡中,输入插件仓库地址:`https://github.com/Mikubill/sd-webui-controlnet`,点击安装。 - 重启WebUI后,在“Settings”中更新ControlNet模型。 2. **中文本地化插件** - **功能**:将WebUI界面汉化,方便中文用户操[^2]。 - **安装方法**: - 下载仓库文件:`https://github.com/hanamizuki-ai/stable-diffusion-webui-localization-zh_Hans.git`,复制到WebUI的`extensions`目录。 - 在WebUI的“Settings”中选择“Chinese (中文)”语言。 3. **模型工具包(Model Toolkit)** - **功能**:管理模型文件(如合并、修剪、换格式)。 - **安装方法**:在插件市场中搜索“stable-diffusion-webui-model-toolkit”并安装。 4. **数据集标签编辑器** - **功能**:批量编辑训练数据集的标签,删除冗余特征词[^4]。 - **使用步骤**: 1. 下载插件“stable-diffusion-webui-dataset-tag-editor-main”并放入`extensions`目录[^4]。 2. 在WebUI中进入该插件,勾选需删除的标签(如“初春特征”),执行批量删除并保存。 --- #### 二、热门模型推荐与安装 1. **ChilloutMix** - **特点**:擅长生成真实系人像,适合写实风格。 - **下载地址**:CivitAI、Hugging Face等平台。 - **安装方法**:将模型文件(`.ckpt`或`.safetensors`)放入WebUI的`models/Stable-diffusion`目录。 2. **DreamShaper** - **特点**:适用于动漫插画风格,渲染效果细腻。 - **安装步骤**:同上,需重启WebUI加载模型。 3. **ControlNet预处理器模型** - **用途**:与ControlNet插件配合使用,需下载对应的`.pth`文件至`extensions/sd-webui-controlnet/models`目录。 --- #### 三、教程资源 1. **本地安装教程** - 参考《5分钟Stable Diffusion本地安装-秋叶整合包》完成基础部署[^1]。 2. **官方文档与社区** - WebUI的GitHub Wiki:提供插件开发、模型训练指南。 - CivitAI论坛:分享模型评测及使用案例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值