目录
前言
随着复杂网络数据的快速增长,图数据的处理和分析成为机器学习领域的一个重要方向。图神经网络(Graph Neural Networks, GNNs)和图表示学习技术逐渐崭露头角,成为处理图数据的有效工具。本文将深入探讨图的形式化定义、图表示学习的基本概念以及一系列先进的图神经网络模型。
1 图的形式化定义和类型
1.1 图的形式化定义
图(Graph)是一种抽象数据结构,由节点和边构成。节点表示图中的元素,边表示节点之间的关系。图的形式化定义可以表示为:
G = ( V , E ) G=(V,E) G=(V,E)
其中, V V V是节点的集合, E E E是边的集合。节点和边的具体性质可以根据应用场景的需求而定。
1.2 图的类型
根据边的方向和节点之间的关系,图可以分为不同类型。
有向图(Directed Graph
有向图中,边是有方向的,从一个节点指向另一个节点。形式化表示为:
G