动态规划(一)硬币找零,机器人路径

动态规划(Dynamic Programming,简称DP),虽然抽象后进行求解的思路并不复杂,但具体的形式千差万别,找出问题的子结构以及通过子结构重新构造最优解的过程很难统一,并不像回溯法具有解决绝大多数问题的银弹。

动态规划求解的一般思路

1.硬币找零

  扩展1:单路取苹果

  扩展2:机器人路径

2.字符串相似度/编辑距离(edit distance)

  应用1:子串匹配

  应用2:最长公共子序列

3.最长公共子序列(Longest Common Subsequence,lcs)

  扩展1:输出所有lcs

  扩展2:通过LCS获得最长递增自子序列

4.最长递增子序列(Longest Increasing Subsequence,lis)

  扩展:求解lis的加速

5.最大连续子序列和/积

  扩展1:正浮点数数组求最大连续子序列积

  扩展2:任意浮点数数组求最大连续子序列积

6.矩阵链乘法

  扩展:矩阵链乘法的备忘录解法(伪码)

7.0-1背包问题

8.有代价的最短路径

9.瓷砖覆盖(状态压缩DP)

10.工作量划分

11.三路取苹果

参考资料

附录1:其他的一些动态规划问题与解答(链接)

附录2:《算法设计手册》第八章 动态规划 面试题解答

动态规划求解的一般思路:

  判断问题的子结构(也可看作状态),当具有最优子结构时,动态规划可能适用。

  求解重叠子问题。一个递归算法不断地调用同一问题,递归可以转化为查表从而利用子问题的解。分治法则不同,每次递归都产生新的问题。

  重新构造一个最优解。

备忘录法:

  动态规划的一种变形,使用自顶向下的策略,更像递归算法。

  初始化时表中填入一个特殊值表示待填入,当递归算法第一次遇到一个子问题时,计算并填表;以后每次遇到时只需返回以前填入的值。

  实例可以参照矩阵链乘法部分。

1.硬币表示

有数量不限的硬币,币值为25分、10分、5分和1分,请编写代码计算n分有几种表示法。
给定一个int n,请返回n分有几种表示法。保证n小于等于100000,为了防止溢出,请将答案Mod 1000000007。
测试样例:
6
返回:2

//二维dp
public int countWays(int n) {
    int A[] = {
  1, 5, 10, 25}, dp[][] = new int[A.length][n + 1];
    for (int j = 0; j <= n; j++) {
        dp[0][j] = 1;
    }
    for (int i = 1; i < A.length; i++) {
        for (int j = 0; j <= n; j++) {
            int t = j - A[i];
            if (t >= 0) {
                dp[i][j] = (dp[i - 1][j] + dp[i][t]) % 1000000007;
            } else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    return dp[A.length - 1][n];
}

//一维dp
public int countWays(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值