动态规划(Dynamic Programming,简称DP),虽然抽象后进行求解的思路并不复杂,但具体的形式千差万别,找出问题的子结构以及通过子结构重新构造最优解的过程很难统一,并不像回溯法具有解决绝大多数问题的银弹。
动态规划求解的一般思路
1.硬币找零
扩展1:单路取苹果
扩展2:机器人路径
2.字符串相似度/编辑距离(edit distance)
应用1:子串匹配
应用2:最长公共子序列
3.最长公共子序列(Longest Common Subsequence,lcs)
扩展1:输出所有lcs
扩展2:通过LCS获得最长递增自子序列
4.最长递增子序列(Longest Increasing Subsequence,lis)
扩展:求解lis的加速
5.最大连续子序列和/积
扩展1:正浮点数数组求最大连续子序列积
扩展2:任意浮点数数组求最大连续子序列积
6.矩阵链乘法
扩展:矩阵链乘法的备忘录解法(伪码)
7.0-1背包问题
8.有代价的最短路径
9.瓷砖覆盖(状态压缩DP)
10.工作量划分
11.三路取苹果
参考资料
附录1:其他的一些动态规划问题与解答(链接)
附录2:《算法设计手册》第八章 动态规划 面试题解答
动态规划求解的一般思路:
判断问题的子结构(也可看作状态),当具有最优子结构时,动态规划可能适用。
求解重叠子问题。一个递归算法不断地调用同一问题,递归可以转化为查表从而利用子问题的解。分治法则不同,每次递归都产生新的问题。
重新构造一个最优解。
备忘录法:
动态规划的一种变形,使用自顶向下的策略,更像递归算法。
初始化时表中填入一个特殊值表示待填入,当递归算法第一次遇到一个子问题时,计算并填表;以后每次遇到时只需返回以前填入的值。
实例可以参照矩阵链乘法部分。
1.硬币表示
有数量不限的硬币,币值为25分、10分、5分和1分,请编写代码计算n分有几种表示法。
给定一个int n,请返回n分有几种表示法。保证n小于等于100000,为了防止溢出,请将答案Mod 1000000007。
测试样例:
6
返回:2
//二维dp
public int countWays(int n) {
int A[] = {
1, 5, 10, 25}, dp[][] = new int[A.length][n + 1];
for (int j = 0; j <= n; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < A.length; i++) {
for (int j = 0; j <= n; j++) {
int t = j - A[i];
if (t >= 0) {
dp[i][j] = (dp[i - 1][j] + dp[i][t]) % 1000000007;
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[A.length - 1][n];
}
//一维dp
public int countWays(