Multisim14.0仿真(四十二)基于74LS183的8位表决器设计

该博客介绍了如何利用Multisim14.0进行74LS183的8位表决器设计。74LS183是一种4位高速全加器,博客详细阐述了其功能、引脚定义、功能表及逻辑图,并展示了仿真原理图和运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、74LS183简介:

        74LS183是一种4位高速全加器,用于数字电路中的加法运算。74LS183输入端包括两个4位二进制数和一个进位信号,输出端包括1个4位二进制数和一个进位信号。

        74LS138具有快速响应、低功耗灯特点,能实现高校的数字匀速。

二、74LS183引脚定义:

三、74LS183功能表:

四、74LS183逻辑图:

五、仿真原理图:

六、运行效果:

<think>好的,用户想用74LS138设计四人表决器的电路方案。首先,我需要回忆一下74LS138的功能。74LS138是一个3线-8线译码器,有三个地址输入端(A0, A1, A2),三个使能端(G1, G2A, G2B),以及八个输出端(Y0-Y7)。当使能端有效时,根据输入的三二进制码,对应的输出端会置低电平,其余为高电平。 四人表决器的逻辑是,当四个人的投票中有三个或四个同意时,表决通过。也就是说,输出为1的条件是投票同意的人数≥3。因此,需要将四个输入变量(假设为A、B、C、D)的组合中,满足三个或四个为1的情况,对应的最小项相加。 但74LS138只有三个地址输入端,而这里需要处理四个变量。这时候可能需要结合其他逻辑门,或者扩展使用两片74LS138。不过,用户可能希望只用一片芯片,所以可能需要利用使能端作为第四个输入。例如,将第四个输入D连接到使能端中的一个,这样当D为有效时,使用其中一部分输出,D无效时使用另一部分。但需要仔细分析。 另一种方法是,将四个输入变量中的三个连接到地址输入端,第四个变量作为使能控制。例如,当D=1时,使能译码器,此时输入ABC的组合对应Y0-Y7,每个输出代表D=1时的情况。而D=0时,译码器不工作,可能需要另一个译码器来处理D=0的情况,但这样可能需要两片芯片。但用户可能希望只用一片,所以可能需要不同的连接方式。 或者,可以将四个输入变量转换为三个变量,通过逻辑组合。例如,四人表决的结果可以分解为三个变量加上第四个变量的组合,但这样可能比较复杂。或者,利用74LS138的输出和外部逻辑门(如与非门)来组合四个变量的情况。 具体来说,四人表决器需要所有四个输入中至少三个为1。四个变量共有16种组合,其中符合条件的有四种情况:三个1和一个0,以及四个全1。共有4(C(4,3))+1=5种情况。需要将这些最小项相加。 例如,当输入为A,B,C,D时,最小项为:ABC'D', AB'CD', A'BCD', 以及类似的组合,这可能需要重新整理。不过,使用译码器的话,每个输出对应一个最小项,所以可以将对应的输出通过或门组合起来。但74LS138只有三个地址输入,所以需要处理第四个变量D。 可能的解决方案是将D连接到使能端。例如,当D=1时,使能译码器,此时ABC的输入组合对应Y0-Y7,每个输出代表D=1时的情况下的ABC组合。同时,当D=0时,可能还需要考虑ABC中有三个1的情况,此时D=0的话总共有三个1,符合条件,所以需要将D=0时的ABC=111的情况也包含进去。 因此,总共有两种情况:D=1且ABC中有至少两个1(因为加上D的1,总共有三个),或者D=0且ABC全为1。这样,总共有: 当D=1时,ABC中有≥2个1的情况对应的译码器输出(例如,ABC=011,101,110,111,即Y3,Y5,Y6,Y7)加上当D=0时ABC=111的情况(Y7,但此时D=0,可能需要另一个条件)。 但这样可能需要将D连接到使能端,比如G1= D,而G2A和G2B接地。这样,当D=1时,G1=1,G2=0,译码器工作,此时ABC的输入对应的Y0-Y7有效。当D=0时,译码器不工作,所有输出为高电平,但此时如果ABC=111,则需要额外处理。这时候,可能需要将D=0时的ABC=111的情况单独用另一个门来检测,比如当D=0且ABC=111时,输出也为1。 所以,总逻辑表达式为:F = D*(Y3 + Y5 + Y6 + Y7) + D'*(A*B*C) 然后,使用74LS138的Y3,Y5,Y6,Y7输出(对应ABC的二进制值011,101,110,111)经过或门,再与D相乘(即通过与门),再加上D'与ABC的与门结果。然后,整个表达式用或门结合两部分。 不过,这样可能需要较多的外部逻辑门。为了简化,可能需要寻找更优化的组合。或者,利用74LS138的输出低电平有效,转换为与非门结构。例如,使用与非门来组合所需的输出,因为译码器的输出是低电平有效,所以可以将需要的Yx输出连接到与非门,然后取反得到高电平有效的信号。 例如,当D=1时,译码器工作,ABC的组合对应的Y3,Y5,Y6,Y7输出低电平,当这些中的任意一个有效,即表示对应的ABC组合加上D=1,满足总共有四个中的三个或四个同意。同时,当D=0时,ABC必须全为1,所以需要检测ABC=111,此时译码器的Y7输出低电平(当D=0时,译码器不工作,Y7为高电平?或者当译码器不工作时,所有输出为高电平?需要确认74LS138的使能逻辑。) 当使能端无效时(G1=0或G2=1),所有输出Y0-Y7都为高电平。所以,当D=0时,译码器的G1=0,所以Y3,Y5,Y6,Y7都是高电平,此时Y7是否为高电平?是的。此时要检测ABC=111且D=0的情况,需要单独用A、B、C连接到与门,得到A*B*C*D',然后将这个信号与之前的部分进行或操作。 因此,总的输出F应该是:当D=1且ABC中有至少两个1(总共有三个或四个1),或者D=0且ABC全为1。那么,对应的最小项数目是:当D=1时,ABC有2、3个1,即对应的译码器输出为ABC=011(Y3)、101(Y5)、110(Y6)、111(Y7)。这四个情况,加上D=0且ABC=111的情况。 因此,F的逻辑表达式为:F = D*(m3 + m5 + m6 + m7) + D'*m7(这里的m7是ABC=111时的最小项)。但D=0时,译码器不工作,所以Y7此时是高电平,所以无法直接使用Y7的输出。因此,需要另外用A、B、C的与门来检测ABC=111的情况,当D=0时,这个与门的输出为1,此时总共有三个同意(ABC=111,D=0)。 因此,最终的逻辑表达式是: F = (Y3' + Y5' + Y6' + Y7') * D + (A*B*C*D') 因为74LS138的输出是低电平有效(即当选中时输出低电平),所以Y3、Y5、Y6、Y7在对应的输入组合时为低电平,其他时候为高电平。因此,当D=1时,译码器工作,若Y3为低,则对应ABC=011,此时D=1,总共有三个1(D+ABC中的两个1?等一下,ABC是三个变量,当D=1时,四个变量中的情况是D=1,加上ABC中的值。比如,当ABC=011时,总共有D=1,A=0,B=1,C=1,所以总共有三个1,符合条件。因此,Y3对应ABC=011,D=1,总共有三个1,所以Y3有效时应被计入。同理,Y5对应ABC=101,加上D=1,总共有三个1,Y6对应ABC=110,加上D=1,总共有三个1,Y7对应ABC=111,加上D=1,总共有四个1。这四个情况都满足表决通过的条件。因此,当D=1时,这四个译码器输出(低电平)中的任意一个都应触发F=1。因此,可以将Y3'、Y5'、Y6'、Y7'(即原输出取反,得到高电平有效信号)进行或运算,然后与D相乘(即D=1时才考虑这些情况)。 同时,当D=0时,译码器不工作,所有Y输出为高电平。此时,需要检测ABC=111的情况,即A=1,B=1,C=1,此时D=0,总共有三个同意,所以F=1。这可以通过一个三输入与门连接A、B、C,再与D的非(D')进行与操作得到。 因此,逻辑表达式为: F = D*(Y3' + Y5' + Y6' + Y7') + (A*B*C*D') 但Y3'等是译码器输出取反后的信号,而译码器的输出Y3在ABC=011且D=1时为低电平,所以Y3'即为高电平,其他情况下为低。因此,Y3' + Y5' + Y6' + Y7'可以通过一个四输入或门实现。但74LS138的输出是低有效,因此,我们可以使用与非门来实现,因为将多个低电平信号进行与非操作,等效于先或后非。例如,将Y3、Y5、Y6、Y7连接到一个四输入与非门,其输出为(Y3*Y5*Y6*Y7)',即当任意一个为低时,输出高电平。这样,当D=1时,这个与非门的输出为高电平的条件是Y3-Y7中有至少一个低电平,即对应的ABC组合符合条件。然后,将这个信号与D相与(因为D=1时才有效),再与另一部分(ABC与D'的与)进行或操作。 因此,最终的电路连接方式可能是: - 将A、B、C连接到74LS138的A0、A1、A2(注意顺序,可能需要确认地址输入的权,通常A2是高,A0是低,所以ABC对应A2、A1、A0?需要确认芯片的引脚定义)。 - 使能端G1接D,G2A和G2B接地,这样当D=1时,G1=1,G2=0,译码器工作;当D=0时,G1=0,译码器不工作。 - 将Y3、Y5、Y6、Y7连接到四输入与非门(如74LS20中的一个四输入与非门),输出为F1 = (Y3*Y5*Y6*Y7)',即当任意一个Y为低时,F1为高。 - 然后,F1与D相与,得到F_part1 = F1 * D。 - 另外,使用一个三输入与门(如74LS11)连接A、B、C,再通过一个非门取D的反,然后与这个与门的输出相与,得到F_part2 = A*B*C*D'。 - 最后,将F_part1和F_part2通过一个或门(如74LS32)结合,得到最终的输出F。 这样,当D=1时,译码器工作,检测到ABC中有至少两个1的情况(总共有三个或四个同意),或者当D=0且ABC全为1时,输出F为高电平,表示表决通过。 需要检查逻辑是否正确。例如,当D=1,ABC=011,译码器Y3输出低,经过与非门后F1=1,F_part1=1*D=1,所以F=1。同样,当ABC=111,D=1,Y7输出低,F1=1,F_part1=1,F=1。当D=0,ABC=111,则F_part2=1*0'=1,所以F=1。其他情况如D=0,ABC=110,则F_part2=0,F_part1=0,F=0,正确。 这样设计应该可以实现四人表决器。接下来需要绘制原理图,使用74LS13874LS20(四输入与非门)、74LS04(非门)、74LS08(与门)、74LS32(或门)等芯片。 可能还需要注意74LS138的引脚排列,比如G1、G2A、G2B的连接方式,地址输入的顺序,以及电源和地的连接。 总结步骤: 1. 确定四人表决器的逻辑表达式,转化为最小项之和。 2. 利用74LS138的译码功能,结合使能端处理第四个变量D。 3. 使用外部逻辑门组合译码器输出和直接检测ABC=111的情况。 4. 绘制原理图,连接各芯片引脚。 最后,用户可能需要具体的原理图,但由于文本描述限制,可能需要用文字描述连接方式,或者建议使用逻辑门的具体型号和连接方法。</think>### 使用74LS138实现四人表决器的电路设计 #### 设计原理 四人表决器的逻辑要求:当4个输入(A、B、C、D)中至少有3个为高电平(1)时,输出结果为1。 74LS138是3线-8线译码器,通过结合其使能端和外部逻辑门,可以扩展为4变量逻辑控制。 #### 实现步骤 1. **逻辑表达式化简** 输出函数可表示为: $$ F = \sum m(7, 11, 13, 14, 15) $$ 其中,$m_7$对应$D=0$且$A,B,C=1$,其余对应$D=1$且至少2个输入为1[^1]。 2. **74LS138配置** - 输入变量$A,B,C$连接至译码器的地址端(A2, A1, A0)。 - 使能端配置: - $G1$接$D$(扩展第4个变量) - $G2A$和$G2B$接地 - 当$D=1$时,译码器工作;$D=0$时,译码器关闭。 3. **输出逻辑组合** - $D=1$时,需检测$Y_3(011)_B$、$Y_5(101)_B$、$Y_6(110)_B$、$Y_7(111)_B$(对应ABC中≥2个1)。 - $D=0$时,需单独检测$A,B,C=111$。 - 使用与非门和与门组合逻辑: $$ F = \overline{\overline{Y_3} \cdot \overline{Y_5} \cdot \overline{Y_6} \cdot \overline{Y_7}} \cdot D + A \cdot B \cdot C \cdot \overline{D} $$ 其中,$\overline{Y_x}$表示74LS138低电平有效输出。 4. **电路连接** - 74LS138的$Y_3,Y_5,Y_6,Y_7$接74LS20(四输入与非门)。 - 74LS20输出与$D$通过74LS08(与门)连接。 - $A,B,C$通过74LS11(三输入与门)和74LS04(非门)检测$D=0$时的$111$状态。 - 最终通过74LS32(或门)合并两部分输出。 #### 原理图示意 ``` +-----+ A ----|A2 | 74LS20 B ----|A1 | Y3 ----┤ ├----┬── 74LS08(D) ──┐ C ----|A0 | Y5 ----┤ ├----┘ ├─ 74LS32 ── F D ----|G1 | Y6 ----┤ ├----┬── 74LS08(D) ──┘ GND --|G2A | Y7 ----┤ ├----┘ GND --|G2B | +-----+ +-----+ A,B,C ── 74LS11 ── 74LS04(D) ──┐ ├─ 74LS32 ── F 74LS08输出 ──────────┘ ``` #### 关键说明 - 当$D=1$时,74LS138检测ABC中≥2个1的组合,通过与非门和与门激活输出。 - 当$D=0$时,ABC全1通过独立与门触发输出。 - 使用标准74系列芯片实现组合逻辑,需注意电源(VCC)和地(GND)连接[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

colin工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值