MATLAB拟合威布尔分布(附完整代码和数据)

文章介绍了如何使用最大似然估计方法来拟合威布尔分布,通过样本数据计算对数似然函数并求导,得出位置参数λ的估计值,即样本数据的平均值。给出了一个实际例子,展示了如何用Matlab编程实现这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里简要介绍一下如何使用最大似然估计方法来拟合威布尔分布:

  1. 假设样本数据x1,x2,…,xn来自于一个未知的威布尔分布。威布尔分布的概率密度函数为:

f(x|λ) = λe^(-λx)

其中λ为位置参数。

  1. 根据最大似然原理,我们要找到使样本数据的似然函数L(λ|x1,x2,…,xn)达到最大值的λ值。

L(λ|x1,x2,…,xn) = Πi=1^n f(xi|λ) = λ^n e^(-λΣxi)

  1. 对数似然函数为:

l(λ|x1,x2,…,xn) = nlogλ - λΣxi

  1. 将对数似然函数对λ求导并令导数为0,可以得到最大似然估计λˆ的值:

λˆ = Σxi / n

也就是样本数据的平均值。

  1. 所以,通过最大似然估计,我们可以得到威布尔分布位置参数λ的一个无偏估计λˆ,它等于样本数据的平均值。

以上就是利用最大似然估计方法拟合威布尔分布的基本步骤。

数据如下:

           4.5601436443429
          7.62862412532937
          6.10435481521625
          5.17911106734894
          4.53737502238713
          6.01159516400874
          7.41074637210801
           11.822337714548
          10.6466358831609
          10.3378228536724
          1.49264705542417
          6.68282534527858
          13.4671284422267
          9.66667276322504
          3.96926844138616
          3.28811058517436
          6.45949731670622
          12.8306267221037
          4.76112071515054
          2.94354705173048
          8.65132829053067
          4.07025852552667
          5.41991945158543
          7.93293700057303
          2.36889275928023
          7.27443698731837
          7.95076274238595
          8.06190901454078
          9.90466610901846
          6.41795399916641
          7.85245829421285
          8.36368464881367
          4.26873223607297
          10.3506021419208
           5.3360985789564
          6.27395246057449
          6.75442746358506
          9.28969851350674
          3.98912407718702
         0.745428231041202
          3.59930760169802
          4.82336229251733
          8.46995737552821
          5.68611753138303
          5.63112152665565
          5.13626846700053
          9.78592420862787
          4.38343275573315
          16.6467377162442
          6.09148864758909
          3.94839868888265
          8.14842107079688
          5.42857013945754
          2.02140997037051
          7.28433324294674
          12.7679286296203
          6.97923009798084
          9.94990051100038
          6.82719535455114
          3.53516340883958
          12.9153889330274
          5.34323305230609
          5.11482377176055
          5.06156634306467
          19.3370910368456
          11.4511291520224
          4.70003057516638
          5.29152519681062
          6.19025264758849
          9.25848484451243
          8.48214945946961
          9.57831745130914
          19.0414835098518
          2.88357835786613
          6.12318980254731
          7.24279148152443
          2.66201388600265
          7.36494731845442
          9.56250988878509
          11.8601704165236
          3.78354849644309
          5.35899541881499
          16.5205727124694
          3.56742702702706
          2.53120985898255
          10.1235179869659
          6.11685828736108
           5.2102854774718
          6.23597712401358
          4.33425039655978
          4.88217129585998
          6.97510387777615
          7.08559632969083
          1.33640194541483
          4.31481960035607
          8.47092426294821
          8.04874230348502
          6.86822229870322
          10.8957538419381
          3.30981412183682

程序如下:

clc;close all;clear all;warning off;%清除变量

y=wblrnd(8,2,100,1)+1*rand(100,1);% 随机数
y
x0=[1,1];

[parmhat1,ML]=fminsearch(@(x) myfun(y,x),x0);
disp('最大似然估计风速得到的威布尔分布参数');
parmhat1
ywbl=wblrnd(parmhat1(1),parmhat1(2),length(y),1);


figure;
plot(ywbl,'b-');

title('威布尔分布','fontname','宋体');

figure;
wblplot(y);
title('威布尔分布概率图','fontname','宋体');

figure; probplot('weibull',y);


a1=wblcdf(sort(y),parmhat1(1),parmhat1(2));

[counts,centers]=hist(y,100);
a0=counts/sum(counts);
g=cumsum(a0);

figure;
bar(centers,counts/sum(counts)); %画出概率密度分布图

figure;
plot(centers,g,'b*'); %画出概率密度分布图
hold on;
plot(sort(y),a1,'r');
legend({'样本','拟合'},'fontname','宋体');
xlabel('数值','fontname','宋体');
ylabel('累积概率','fontname','宋体');
title('威尔分布累积概率','fontname','宋体');

function y=myfun(data,x)
a=x(1);% 分布的参数1
b=x(2);% 分布的参数2

% y = wblpdf(data,A,B);% 概率
p=b/a*(data/a).^(b-1).*exp(-(data/a).^b);% 威布尔分布的概率密度函数
y=-sum(log(p));% 似然函数值最大化
 

程序结果如下:


最大似然估计风速得到的威布尔分布参数

parmhat1 =

    8.1692    2.0760
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值