高斯(Gaussian)滤波、中值(Median)滤波与双边(Bilateral)滤波的特点

图像预处理过程中,常常会遇到类似这样问题:有没有一个“好”的算法?例如,有没有一个好的边缘检测算法,或者有没有一个好的滤波算法?但通常来说,没有一个算法能够满足通用性要求,每个算法都有各自的特点。因此,对于这类问题,最先要问的是:我要解决什么问题,为什么我需要一个这样的算法?对于人造物体的检测,可能需要边缘检测算法,因为人造物体中,有规律的边缘或直线比较常见,但需要调整一些参数;对于非人造物体,可能识别特征或颜色更合适,这里并不需要边缘检测。这篇文章介绍一下高斯滤波、中值滤波与双边滤波的基本特点,实际应用中可能会遇到的一些问题。

高斯滤波

高斯滤波是线性(Linear)滤波的一种,原理是针对图像中的每一个点(Pixel)与高斯内核(Kernel)进行卷积计算,并将计算结果相加,输出到目标图像中。
高斯滤波的通用性与性能都比较好,并且由于是线性滤波,对于卷积计算过程,可以通过对Kernel的降维,使算法的时间复杂度由 n2 降为 n2 。另外,在OpenCV中,针对特定尺寸的Kernel,如 33 , 55 , 77 都有特殊的实现,使得性能相比其它的Kernel,有额外的提升。

中值滤波

中值滤波属于非线性(Non-linear)滤波的一种。中值滤波使用一个围绕当前像素的矩形,查找区域内像素的中值(Median or Middle-Value),并用该中值替换矩形区域内的其它像素点。中值滤波对于散射噪声(Shot Noise)的处理比较理想,因为散射噪声通常与周围像素值的差异非常大。但中值滤波的性能一般,因为算法执行过程中,要使用中值对其它像素进行替换。而且对于高斯噪声的处理不理想,不过可以通过追加针对区域像素最大值与最小值的忽略,来计算中值。

双边滤波

如果采用一个基于权重的Kernel和一个更好的排除算法(如,中值滤波会导致图像的边缘不清晰,因为中值的选择很可能基于图像的背景像素进行),会发生什么?这个思路就是双边滤波的基本想法。双边滤波中,输出像素基于相邻像素的计算的权重值进行,而权重函数的系数基于一个Domain Kernel和Range Kernel计算而来。Domain Kernel通常是高斯Kernel,而Range Kernel用于计算相邻像素与中心像素的相似度。双边滤波的性能不是特别好,但对于以上俩种滤波算法来说,其重要的特点是能够保持图像的边缘清晰(高斯滤波会导致像素移位),这在检测应用中有重要的意义。

1. 主要工作: 基于MATLAB图像处理的中值滤波、均值滤波以及高斯滤波的实现与对比: a) 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. b) 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 c) 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。 2. 代码功能: 实现中值滤波、均值滤波以及高斯滤波,并对图像进行输出 3. 结果分析 a) 图像经过中值滤波后,高斯噪声没有被完全去除,椒盐噪声几乎被完全去除效果较好。经过均值滤波后不管是高斯噪声还是椒盐噪声大部分都没有被去除,只是稍微模糊化。经过高斯滤波后,高斯噪声和椒盐噪声几乎被很大程度的模糊化,原图好像被加上了一层蒙版。 【注】若添加图片分辨率过高会发出警报,如果可以正常输出则可以忽视。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值