均值滤波、高斯滤波、中值滤波、双边滤波4者有什么区别呢?应用场合有什么区别呢?

问题描述:

均值滤波、高斯滤波、中值滤波、双边滤波4者有什么区别呢?应用场合有什么区别呢?

问题解答:

均值滤波、高斯滤波、中值滤波和双边滤波是四种常见的图像平滑和去噪技术。它们各自有不同的特点和应用场景:

1. 均值滤波(Mean Filtering)

  • 原理:使用均匀的卷积核对图像进行模糊处理。每个像素的值被其邻域内所有像素值的平均值替代。
  • 特点:简单快速,但会导致边缘模糊,平滑效果较强。
  • 应用场合:适合去除高斯噪声,但不适合保留边缘信息。

2. 高斯滤波(Gaussian Filtering)

  • 原理:使用高斯函数生成的卷积核进行加权平均。中心像素的权重最大,离中心越远的像素权重越小。
  • 特点:在平滑图像的同时,能更好地保留边缘,相比均值滤波,噪声去除效果更好。
  • 应用场合:适合去除高斯噪声,图像预处理,特别是对后续处理(如边缘检测)有帮助。

3. 中值滤波(Median Filtering)

  • 原理:使用邻域内像素的中值代替目标像素的值,能有效去除椒盐噪声。
  • 特点:对异常值(噪声)有较好的鲁棒性,不会像均值和高斯滤波那样导致边缘模糊。
  • 应用场合:常用于去除椒盐噪声,适合保留边缘信息。

4. 双边滤波(Bilateral Filtering)

  • 原理:同时考虑空间距离和像素值相似性,结合高斯平滑和保边缘特性。邻域内的像素不仅依赖空间距离,还依赖像素值的相似度。
  • 特点:能有效平滑图像,同时保留边缘信息。计算量较大。
  • 应用场合:常用于图像去噪和图像处理中的边缘保持,例如图像增强和图像合成。

总结

  • 均值滤波:简单、快速,适合去除高斯噪声,但边缘模糊严重。
  • 高斯滤波:较好保留边缘,适合去除高斯噪声。
  • 中值滤波:对椒盐噪声有效,边缘保留好。
  • 双边滤波:最优的边缘保持,适合复杂图像处理,但计算开销大。

根据图像中的噪声类型和处理需求,选择合适的滤波方法非常重要。

均值滤波代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv-logo-white.png')
blur = cv2.blur(img,(5,5))
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

高斯滤波

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv-logo-white.png')
blur = cv2.GaussianBlur(img,(5,5),0)
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

 中值滤波

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv-logo-white.png')
median = cv2.medianBlur(img,5)
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(median),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

双边滤波

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv-logo-white.png')
blur = cv2.bilateralFilter(img,9,75,75)
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

 

1. 主要工作: 基于MATLAB图像处理的中值滤波均值滤波以及高斯滤波的实现与对比: a) 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. b) 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 c) 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。 2. 代码功能: 实现中值滤波均值滤波以及高斯滤波,并对图像进行输出 3. 结果分析 a) 图像经过中值滤波后,高斯噪声没有被完全去除,椒盐噪声几乎被完全去除效果较好。经过均值滤波后不管是高斯噪声还是椒盐噪声大部分都没有被去除,只是稍微模糊化。经过高斯滤波后,高斯噪声和椒盐噪声几乎被很大程度的模糊化,原图好像被加上了一层蒙版。 【注】若添加图片分辨率过高会发出警报,如果可以正常输出则可以忽视。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值