【BZOJ】5248: [2018多省省队联测]一双木棋-轮廓线&状压

96 篇文章 0 订阅
13 篇文章 0 订阅

传送门:bzoj5248


题解

n ≤ 10 , m ≤ 10 n\leq10,m\leq10 n10,m10明示要状压,但怎么记录状态呢?

可以发现当前所有棋子的排列必然是阶梯形的(设 n u m i num_i numi表示从上到下第 i i i行的棋子个数,则 n u m i ≥ n u m i + 1 num_i\geq num_{i+1} numinumi+1,且每一行的棋子必然靠左排列)。那么只需要状压记录每行的棋子个数即可。

一种巧妙的方式是将这个阶梯形的变化看做轮廓线,记录第一行的棋子个数为 i i i,轮廓线中 0 , 1 0,1 0,1分别表示从当前位置向左/向右走,最多 n + m − 2 n+m-2 n+m2次就能走到终点。

但是要求双方都采用最优策略且知道对方会采用最优策略,一种常用的套路就是倒序 d p dp dp,设 f i , j f_{i,j} fi,j表示从第一排第 i i i个棋子出发轮廓线为 j j j,不包括当前状态的后续的“双方均采用最优策略”的差值。这样就可以直接选最优情况转移了。一般这种 d p dp dp可以采用记忆化搜索,但发现对于这道题每次倒推到需要判断当前是先手还是后手,轮廓线如何向外走,使用记忆化搜索反而体现不出简洁性。然而我们可以将 d p dp dp的状态转移看成一张 D A G DAG DAG,拓扑排序倒推即可。

对于先手后手,分别取 m i n / m a x min/max min/max也需要仔细考虑,这里就不详说了。


代码

#include<bits/stdc++.h>
using namespace std;
const int N=20,M=(1<<19)+10,inf=0x3f3f3f3f;

int n,m,f[N][M],d[N][M],val[2][11][11],bin[30];
bool rod[N][M];

struct P{
   int pos,sta;
   P(int ps_=0,int st_=0):pos(ps_),sta(st_){};
}tp;
queue<P>que;

int main(){
	int i,j,k,x,y,sa,sb,p,vl;bin[0]=1;
	for(i=1;i<30;++i) bin[i]=bin[i-1]<<1;
	scanf("%d%d",&n,&m);
	for(k=0;k<2;++k)
	  for(i=1;i<=n;++i)
	   for(j=1;j<=m;++j)
	     scanf("%d",&val[k][i][j]);
	que.push(P(m,bin[n-1]-1));rod[m][bin[n-1]-1]=(n*m)&1;
	for(;que.size();){
		tp=que.front();que.pop();x=tp.pos;sa=tp.sta;sb=sa>>1;p=rod[x][sa]^1;
		if(((sa&1)^1)&&(x!=1)){
		   d[x-1][sb]++;
		   if(d[x-1][sb]==1) rod[x-1][sb]=p,que.push(P(x-1,sb));
		}y=x;
		for(i=0,j=sa;j;j>>=1,++i){
			if((j&1)&&(((j>>1)&1)^1)){
			   sb=sa^((y==1)?(1<<i):(3<<i));d[x][sb]++;
			   if(d[x][sb]==1) rod[x][sb]=p,que.push(P(x,sb));
		    }
		    if((j&1)^1) y--; 
		}
		f[x][sa]=rod[x][sa]?inf:(-inf);
	}
	que.push((P){m,bin[n-1]-1});f[m][bin[n-1]-1]=0;
	for(;que.size();){
		tp=que.front();que.pop();x=tp.pos;sa=tp.sta;sb=sa>>1;p=rod[x][sa];vl=f[x][sa];
		if(((sa&1)^1)&&(x!=1)){
			d[x-1][sb]--;if(!d[x-1][sb]) que.push(P(x-1,sb));
			f[x-1][sb]=p?max(f[x-1][sb],vl+val[0][1][x]):min(f[x-1][sb],vl-val[1][1][x]);
		}y=x;x=1;
		for(i=0,j=sa;j;j>>=1,++i){
			if((j&1)&&(((j>>1)&1)^1)){
				sb=sa^((y==1)?(1<<i):(3<<i));d[tp.pos][sb]--;
				if(!d[tp.pos][sb]) que.push(P(tp.pos,sb));
			    f[tp.pos][sb]=p?max(f[tp.pos][sb],vl+val[0][x+1][y]):min(f[tp.pos][sb],vl-val[1][x+1][y]);
			}
			if(j&1) x++;else y--;
		}
	}
	printf("%d",f[1][0]+val[0][1][1]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值