【BZOJ】2095: [Poi2010]Bridges - 二分+欧拉图混合边路径(最大流)

传送门:bzoj2095


题解

二分答案。

问题等价于有向图中给一些无向图定向,使得每个点入度=出度。

先随意定向,然后根据每个点出入度之差跑最大流(套路)


代码

我真傻,真的,单知道写dinic,却没发现自己-=写成了=-
就像下面这样写过无数次的:

w[i]-=res;w[i^1]+=res;ss+=res;

还是写成了

w[i]=-res;w[i^1]+=res;ss+=res;

#include<bits/stdc++.h>
using namespace std;
const int N=1010,M=2020,inf=0x7f7f7f7f;

int n,m,d[N],ans=M;
struct pr{int u,v,a,b;}le[M];

namespace MF{
#define MX 50000
int head[N],to[MX],nxt[MX],w[MX],tot;
int S,T,dep[N];

inline void init()
{
    memset(head,0,(T+1)<<2);tot=1;
    memset(d,0,(n+1)<<2);
}

inline void lk(int u,int v,int vv)
{
    to[++tot]=v;nxt[tot]=head[u];head[u]=tot;w[tot]=vv;
    to[++tot]=u;nxt[tot]=head[v];head[v]=tot;w[tot]=0;
}

queue<int>que;
inline bool bfs()
{
	int i,j,x;
	memset(dep,0xff,(T+1)<<2);
	dep[S]=1;que.push(S);
	for(;!que.empty();){
		x=que.front();que.pop();
		for(i=head[x];i;i=nxt[i]){
			j=to[i];if(dep[j]!=-1 || (!w[i])) continue;
			dep[j]=dep[x]+1;que.push(j);
		}
	}
	return (dep[T]!=-1);
}

int dfs(int x,int f)
{
	if(x==T) return f;
	int i,j,res,ss=0;
	for(i=head[x];i;i=nxt[i]){
		j=to[i];if(dep[j]!=dep[x]+1 || (!w[i])) continue;
		res=dfs(j,min(f-ss,w[i]));
		if(!res) continue;
		w[i]-=res;w[i^1]+=res;ss+=res;
		if(ss==f) return ss;
	}
	if(!ss) dep[x]=-1;
	return ss;
}

inline bool ck(int lim)
{
	S=0;T=n+1;init();int i,j,sum=0;
	for(i=1;i<=m;++i){
		d[le[i].u]--,d[le[i].v]++;
		if(le[i].b<=lim) lk(le[i].v,le[i].u,1);
	}
	for(i=1;i<=n;++i){
		if(d[i]&1) return false;
		if(d[i]>0) sum+=(d[i]>>1),lk(S,i,d[i]>>1);
		else lk(i,T,(-d[i])>>1);
	}
	for(;bfs();) 
	  sum-=dfs(S,inf);
	return (sum==0);
}
#undef MX
}

int main(){
	int i,j,l=0,r=0,mid;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;++i){
	 scanf("%d%d%d%d",&le[i].u,&le[i].v,&le[i].a,&le[i].b);
	 if(le[i].a>le[i].b) swap(le[i].a,le[i].b),swap(le[i].u,le[i].v); 
	 l=max(l,le[i].a);r=max(r,le[i].b);
    }
    for(;l<=r;){
    	mid=(l+r)>>1;
    	if(MF::ck(mid)) r=(ans=mid)-1;
		else l=mid+1;
	}
	if(ans==M) printf("NIE");
	else printf("%d",ans);
	return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值