拉普拉斯变换的收敛域(ROC)与逆变换(ILT)
在进行拉普拉斯变换时,需要满足一些条件,例如f(t) = e^(-at),在转化到ʃ(∞->0)e^(-(s+a)t)时,这个式子需要满足可积,也就是可收敛。
所以便有了收敛域 (ROC)。
微分方程
每当我们要分析一个复杂的运动过程等,我们便需要微分方程帮助,也可以说,微分方程可协助我们搭建一个动态世界。
而构建完微分函数后,我们有时甚至不用求解,只需观察传递函数便能对系统的表现进行判断了。
在经典控制理论和现代控制理论中,大部分的研究对象便是常系数微分方程,对应线性时不变系统,非线性一般会被转化为线性,或用非线性的分析手段。
拉普拉斯变换求解线性微分方程
三个步骤:
1. 将时域转化到S域上,也就是拉普拉斯变换
2. 求解代数方程。
3. 将结果从S域再转化到时域上。,也就是拉普拉斯逆变换(ILT)、
传递函数(Transfer Function)与拉普拉斯变换的关系