控制工程第三次笔记

拉普拉斯变换是解决线性微分方程的重要工具,它将复杂的时域问题转换为简单的S域计算。通过求解传递函数,可以分析系统的动态特性并判断稳定性。收敛域(ROC)确保变换的收敛性,而逆变换(ILT)则用于将S域结果转换回时域。稳定性分析主要关注系统极点的位置,零点和极点的分布影响系统的行为和稳定性。拉普拉斯变换简化了卷积运算,使得计算和分析更为便捷。
摘要由CSDN通过智能技术生成

拉普拉斯变换的收敛域(ROC)与逆变换(ILT)

  在进行拉普拉斯变换时,需要满足一些条件,例如f(t) = e^(-at),在转化到ʃ(∞->0)e^(-(s+a)t)时,这个式子需要满足可积,也就是可收敛。

  所以便有了收敛域 (ROC)。 

微分方程

  每当我们要分析一个复杂的运动过程等,我们便需要微分方程帮助,也可以说,微分方程可协助我们搭建一个动态世界。

  而构建完微分函数后,我们有时甚至不用求解,只需观察传递函数便能对系统的表现进行判断了。

在经典控制理论和现代控制理论中,大部分的研究对象便是常系数微分方程,对应线性时不变系统,非线性一般会被转化为线性,或用非线性的分析手段。

拉普拉斯变换求解线性微分方程

三个步骤:

        1. 将时域转化到S域上,也就是拉普拉斯变换

        2. 求解代数方程。

        3. 将结果从S域再转化到时域上。,也就是拉普拉斯逆变换(ILT)、

传递函数(Transfer Function)与拉普拉斯变换的关系

   

拉普拉斯变换将复杂的卷积转化为乘积,从而简化分析和计算。

稳定性分析_极点_Stability

不稳定状态:x(t)->∞

临界稳定:|x(t)|<M

稳定:|x(t)|->0

BIBO稳定:有界输入只会出现有界输出,过大输入会破坏稳定

当G(S) = D(S)/N(S)时

零点:D(S) = 0时所求出的S值为零点。

极点:N(S) = 0时所求出的S值为极点。

拉普拉斯变换的应用

 拉普拉斯变换的性质

我在其他找到的。

(16条消息) 拉普拉斯变换的性质_一只小汤姆的博客-CSDN博客_拉普拉斯微分性质

(16条消息) 常用拉普拉斯变换_tomeasure的博客-CSDN博客_常用拉普拉斯变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值