1. 线性性质
设
L
[
f
(
t
)
]
=
F
(
s
)
\mathscr{L}[f(t)] = F(s)
L[f(t)]=F(s),
L
[
g
(
t
)
]
=
G
(
s
)
\mathscr{L}[g(t)] = G(s)
L[g(t)]=G(s) 则
F
[
α
f
(
t
)
+
β
g
(
t
)
]
=
α
F
(
s
)
+
β
G
(
s
)
,
\mathscr{F}[\alpha f(t) + \beta g(t)] = \alpha F(s) + \beta G(s),
F[αf(t)+βg(t)]=αF(s)+βG(s),
F − 1 [ α F ( s ) + β G ( s ) ] = α f ( t ) + β g ( t ) ] . \mathscr{F}^{-1} [\alpha F(s) + \beta G(s)]= \alpha f(t) + \beta g(t)]. F−1[αF(s)+βG(s)]=αf(t)+βg(t)].
2. 相似性质
设
L
[
f
(
t
)
]
=
F
(
s
)
\mathscr{L}[f(t)] = F(s)
L[f(t)]=F(s),则对任一常数
a
>
0
a>0
a>0有
L
[
f
(
a
t
)
]
=
1
a
F
(
s
a
)
.
\mathscr{L}[f(at)] = \frac{1}{a}F(\frac{s}{a}).
L[f(at)]=a1F(as).
3. 微分性质
(1)导数的像函数
设
L
[
f
(
t
)
]
=
F
(
s
)
设\mathscr{L}[f(t)] = F(s)
设L[f(t)]=F(s),则有
L
[
f
′
(
t
)
]
=
s
F
(
s
)
−
f
(
0
)
;
\mathscr{L}[f'(t)] = sF(s) - f(0);
L[f′(t)]=sF(s)−f(0);
一般地,有
L
[
f
(
n
)
]
=
s
n
F
(
s
)
−
s
n
−
1
f
(
0
)
−
s
n
−
2
f
′
(
0
)
−
⋅
⋅
⋅
−
f
(
n
−
1
)
(
0
)
,
\mathscr{L}[f^{(n)}] = s^nF(s) - s^{n-1}f(0) - s^{n-2}f'(0) - ···-f^{(n-1)}(0),
L[f(n)]=snF(s)−sn−1f(0)−sn−2f′(0)−⋅⋅⋅−f(n−1)(0),
其中,
f
(
k
)
(
0
)
应
理
解
为
lim
t
→
0
+
f
(
k
)
(
t
)
f^{(k)}(0)应理解为\lim_{t \to 0^+}f^{(k)}(t)
f(k)(0)应理解为limt→0+f(k)(t)
(2)像函数的导数
设
L
[
f
(
t
)
]
=
F
(
s
)
设\mathscr{L}[f(t)] = F(s)
设L[f(t)]=F(s),则有
F
′
(
s
)
=
−
L
[
t
f
(
t
)
]
;
F'(s) =- \mathscr{L}[tf(t)] ;
F′(s)=−L[tf(t)];
一般地,有
F
(
n
)
(
s
)
=
(
−
1
)
n
L
[
t
n
f
(
t
)
]
.
F^{(n)}(s) = (-1)^n \mathscr{L}[t^nf(t)].
F(n)(s)=(−1)nL[tnf(t)].
4. 积分性质
(1)积分的像函数
设
L
[
f
(
t
)
]
=
F
(
s
)
设\mathscr{L}[f(t)] = F(s)
设L[f(t)]=F(s),则有
L
[
∫
0
t
f
(
t
)
]
d
t
=
1
s
F
(
s
)
;
\mathscr{L}[\int_{0}^{t}f(t)]dt = \frac{1}{s}F(s);
L[∫0tf(t)]dt=s1F(s);
一般地,有
L
[
∫
0
t
d
t
∫
0
t
d
t
⋅
⋅
⋅
∫
0
t
f
(
t
)
d
t
]
=
1
s
n
F
(
s
)
.
\mathscr{L} [\int_{0}^{t}dt\int_{0}^{t}dt···\int_{0}^{t}f(t)dt]= \frac{1}{s^n}F(s).
L[∫0tdt∫0tdt⋅⋅⋅∫0tf(t)dt]=sn1F(s).
(2)像函数的积分
设
L
[
f
(
t
)
]
=
F
(
s
)
设\mathscr{L}[f(t)] = F(s)
设L[f(t)]=F(s),则有
∫
s
∞
F
(
s
)
d
s
=
L
[
f
(
t
)
t
]
,
\int_{s}^{\infty}F(s)ds = \mathscr{L}[\frac{f(t)}{t}],
∫s∞F(s)ds=L[tf(t)],
一般地,有
∫
0
t
d
t
∫
0
t
d
t
⋅
⋅
⋅
∫
0
t
f
(
t
)
d
t
=
L
[
f
(
t
)
t
n
]
.
\int_{0}^{t}dt\int_{0}^{t}dt···\int_{0}^{t}f(t)dt=\mathscr{L}[ \frac{f(t)}{t^n}].
∫0tdt∫0tdt⋅⋅⋅∫0tf(t)dt=L[tnf(t)].
5. 延迟性质
设
L
[
f
(
t
)
]
=
F
(
s
)
,
当
t
<
0
时
f
(
t
)
=
0
,
则
对
任
意
非
负
实
数
τ
有
设\mathscr{L}[f(t)] = F(s),当t<0时f(t) = 0,则对任意非负实数\tau 有
设L[f(t)]=F(s),当t<0时f(t)=0,则对任意非负实数τ有
L
[
f
(
t
−
τ
)
]
=
e
−
s
t
F
(
s
)
.
\mathscr{L}[f(t-\tau)] = e^{-st}F(s).
L[f(t−τ)]=e−stF(s).
6. 位移性质
设
L
[
f
(
t
)
]
=
F
(
s
)
设\mathscr{L}[f(t)] = F(s)
设L[f(t)]=F(s),则有
L
[
e
a
t
f
(
t
)
]
=
F
(
s
−
a
)
(
a
为
一
复
常
数
)
\mathscr{L}[e^{at}f(t)] = F(s-a)~~~(a为一复常数)
L[eatf(t)]=F(s−a) (a为一复常数)