拉普拉斯变换的性质

1. 线性性质

L [ f ( t ) ] = F ( s ) \mathscr{L}[f(t)] = F(s) L[f(t)]=F(s) L [ g ( t ) ] = G ( s ) \mathscr{L}[g(t)] = G(s) L[g(t)]=G(s)
F [ α f ( t ) + β g ( t ) ] = α F ( s ) + β G ( s ) , \mathscr{F}[\alpha f(t) + \beta g(t)] = \alpha F(s) + \beta G(s), F[αf(t)+βg(t)]=αF(s)+βG(s),

F − 1 [ α F ( s ) + β G ( s ) ] = α f ( t ) + β g ( t ) ] . \mathscr{F}^{-1} [\alpha F(s) + \beta G(s)]= \alpha f(t) + \beta g(t)]. F1[αF(s)+βG(s)]=αf(t)+βg(t)].

2. 相似性质

L [ f ( t ) ] = F ( s ) \mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则对任一常数 a > 0 a>0 a>0
L [ f ( a t ) ] = 1 a F ( s a ) . \mathscr{L}[f(at)] = \frac{1}{a}F(\frac{s}{a}). L[f(at)]=a1F(as).

3. 微分性质

(1)导数的像函数

设 L [ f ( t ) ] = F ( s ) 设\mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则有
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) ; \mathscr{L}[f'(t)] = sF(s) - f(0); L[f(t)]=sF(s)f(0);
一般地,有
L [ f ( n ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋅ ⋅ ⋅ − f ( n − 1 ) ( 0 ) , \mathscr{L}[f^{(n)}] = s^nF(s) - s^{n-1}f(0) - s^{n-2}f'(0) - ···-f^{(n-1)}(0), L[f(n)]=snF(s)sn1f(0)sn2f(0)f(n1)(0),
其中, f ( k ) ( 0 ) 应 理 解 为 lim ⁡ t → 0 + f ( k ) ( t ) f^{(k)}(0)应理解为\lim_{t \to 0^+}f^{(k)}(t) f(k)(0)limt0+f(k)(t)

(2)像函数的导数

设 L [ f ( t ) ] = F ( s ) 设\mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则有
F ′ ( s ) = − L [ t f ( t ) ] ; F'(s) =- \mathscr{L}[tf(t)] ; F(s)=L[tf(t)];
一般地,有
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] . F^{(n)}(s) = (-1)^n \mathscr{L}[t^nf(t)]. F(n)(s)=(1)nL[tnf(t)].

4. 积分性质

(1)积分的像函数

设 L [ f ( t ) ] = F ( s ) 设\mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则有
L [ ∫ 0 t f ( t ) ] d t = 1 s F ( s ) ; \mathscr{L}[\int_{0}^{t}f(t)]dt = \frac{1}{s}F(s); L[0tf(t)]dt=s1F(s);
一般地,有
L [ ∫ 0 t d t ∫ 0 t d t ⋅ ⋅ ⋅ ∫ 0 t f ( t ) d t ] = 1 s n F ( s ) . \mathscr{L} [\int_{0}^{t}dt\int_{0}^{t}dt···\int_{0}^{t}f(t)dt]= \frac{1}{s^n}F(s). L[0tdt0tdt0tf(t)dt]=sn1F(s).

(2)像函数的积分

设 L [ f ( t ) ] = F ( s ) 设\mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则有
∫ s ∞ F ( s ) d s = L [ f ( t ) t ] , \int_{s}^{\infty}F(s)ds = \mathscr{L}[\frac{f(t)}{t}], sF(s)ds=L[tf(t)],
一般地,有
∫ 0 t d t ∫ 0 t d t ⋅ ⋅ ⋅ ∫ 0 t f ( t ) d t = L [ f ( t ) t n ] . \int_{0}^{t}dt\int_{0}^{t}dt···\int_{0}^{t}f(t)dt=\mathscr{L}[ \frac{f(t)}{t^n}]. 0tdt0tdt0tf(t)dt=L[tnf(t)].

5. 延迟性质

设 L [ f ( t ) ] = F ( s ) , 当 t < 0 时 f ( t ) = 0 , 则 对 任 意 非 负 实 数 τ 有 设\mathscr{L}[f(t)] = F(s),当t<0时f(t) = 0,则对任意非负实数\tau 有 L[f(t)]=F(s)t<0f(t)=0τ
L [ f ( t − τ ) ] = e − s t F ( s ) . \mathscr{L}[f(t-\tau)] = e^{-st}F(s). L[f(tτ)]=estF(s).

6. 位移性质

设 L [ f ( t ) ] = F ( s ) 设\mathscr{L}[f(t)] = F(s) L[f(t)]=F(s),则有
L [ e a t f ( t ) ] = F ( s − a )     ( a 为 一 复 常 数 ) \mathscr{L}[e^{at}f(t)] = F(s-a)~~~(a为一复常数) L[eatf(t)]=F(sa)   (a)

7. 周期函数的像函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值