给你二叉树的根节点 root 和一个表示目标和的整数 targetSum ,判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。
叶子节点 是指没有子节点的节点。
思路:
首先这是一个递归的题。
如果我要求一颗树中有没有从根节点到叶子节点的路径,其路径上所有节点的和为sum。
我们可以把它分解为:
- 如果根节点小于sum
- 则判断其左子树和右子树是否有路径和为(sum-根节点)的路径(递归)
递归的终止条件为:当前节点为叶子节点,且其值等于传入的sum。或当前节点为null。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root==null)//当前节点为null,说明这条路已经走到底了,总和不为sum
{
return false;
}
if(root.val==targetSum&&root.left==null&&root.right==null)
{//当前节点为叶子节点,且当前节点等于sum,说明这条路走到底,且总和为sum
return true;
}
//否则,就说明这条路还没到底,继续进入递归。查找左右子树中的sum-root.val的路径
return (hasPathSum(root.left,targetSum-root.val)||hasPathSum(root.right,targetSum-root.val));