摘要
这几天刚出的pytorch版本的yolo4,训练测试一下看下效果,pytorch yolo4连接,
数据集准备
第一步先生成yolo统一的格式txt文件,

import os
name=os.listdir('./image')
for i in range(len(name)):
name[i]='./coco/images/train2017/'+name[i]
file = open('./train2017.txt', 'w')
for i in range(len(name)):
file.write(name[i])
file.write('\n')
file.close()
生成train2017是遍历你自己的图像名称,一共有二个文件,分为训练集和验证集,我直接全训练集训练了,随便复制一点路径在生成一个testdev.txt文件即可。
xml转txt
生成一堆txt文件,每个对应一个xml文件生成。


yolo统一格式label xywh形式。
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = []
classes

本文介绍如何使用PyTorch版本的YOLOv4进行目标检测模型的训练,包括数据集准备、XML到TXT的转换、配置文件调整及训练过程。通过实例演示,读者可以学习到整个训练流程。
最低0.47元/天 解锁文章
8万+





