pytorch yolo4训练任意训练集

本文介绍如何使用PyTorch版本的YOLOv4进行目标检测模型的训练,包括数据集准备、XML到TXT的转换、配置文件调整及训练过程。通过实例演示,读者可以学习到整个训练流程。

摘要

这几天刚出的pytorch版本的yolo4,训练测试一下看下效果,pytorch yolo4连接

数据集准备

第一步先生成yolo统一的格式txt文件,
在这里插入图片描述

import os

name=os.listdir('./image')
for i in range(len(name)):
    name[i]='./coco/images/train2017/'+name[i]
file = open('./train2017.txt', 'w')
for i in range(len(name)):
    file.write(name[i])
    file.write('\n')
file.close()

生成train2017是遍历你自己的图像名称,一共有二个文件,分为训练集和验证集,我直接全训练集训练了,随便复制一点路径在生成一个testdev.txt文件即可。

xml转txt

生成一堆txt文件,每个对应一个xml文件生成。
在这里插入图片描述
在这里插入图片描述
yolo统一格式label xywh形式。


import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets = []
classes 
评论 8
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值