这是bert的pytorch版本(与tensorflow一样的,这个更简单些,这个看懂了,tf也能看懂),地址:https://github.com/huggingface/pytorch-pretrained-BERT 主要内容在pytorch_pretrained_bert/modeling文件中。
---------------------
作者:c-minus
来源:CSDN
原文:https://blog.csdn.net/cpluss/article/details/88418176
版权声明:本文为博主原创文章,转载请附上博文链接!
讲解之前,有必要先了解一下torch.nn.CrossEntropyLoss函数
#这是一个交叉熵损失函数,但又和传统的交叉熵函数不是太一样。由于在源码中出现的次数较多,因此先讲解一下。
#以下全是我的个人理解!!!!(真的不一定是正确的,欢迎指正)
#我只讲可能用到的参数。
class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
#weight:权重。这个参数是针对训练文件不平衡设置的。例如,训练一个C分类问题,但是训练数据中C中各种类别所占的比例不一样,这是就需要一个weight参数,也因此weight也必须是C维度的
#