Bert代码详解(二)

本文主要介绍PyTorch实现的BERT模型,包括BertForMaskedLM、BertForNextSentencePrediction和BertForSequenceClassification。内容来源于github上的pytorch-pretrained-BERT库,重点解析模型的核心部分。
摘要由CSDN通过智能技术生成

这是bert的pytorch版本(与tensorflow一样的,这个更简单些,这个看懂了,tf也能看懂),地址:https://github.com/huggingface/pytorch-pretrained-BERT   主要内容在pytorch_pretrained_bert/modeling文件中。
--------------------- 
作者:c-minus 
来源:CSDN 
原文:https://blog.csdn.net/cpluss/article/details/88418176 
版权声明:本文为博主原创文章,转载请附上博文链接!

讲解之前,有必要先了解一下torch.nn.CrossEntropyLoss函数

#这是一个交叉熵损失函数,但又和传统的交叉熵函数不是太一样。由于在源码中出现的次数较多,因此先讲解一下。
#以下全是我的个人理解!!!!(真的不一定是正确的,欢迎指正)
#我只讲可能用到的参数。
class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
#weight:权重。这个参数是针对训练文件不平衡设置的。例如,训练一个C分类问题,但是训练数据中C中各种类别所占的比例不一样,这是就需要一个weight参数,也因此weight也必须是C维度的
#
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值