Python实现:利用GBDT产生新特征(GBDT+Linear Regression)

本文介绍了如何使用Python结合GBDT(梯度提升决策树)生成新特征,并将这些特征用于线性回归模型以预测价格。算法思路是训练GBDT模型,根据树的叶子节点构造新特征向量,然后用one-hot编码转换这些特征以供线性模型使用。
摘要由CSDN通过智能技术生成

Python实现:利用GBDT产生新特征(GBDT+Linear Regression


最近实习接了个任务,利用GBDT产生新特征,加入到已有特征中,再训练线性模型,预测价格。


算法思想:

训练集上,用已有特征训练GBDT模型,然后利用GBDT模型学习到的树来

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值