机器学习总结(九):梯度消失(vanishing gradient)与梯度爆炸(exploding gradient)问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cppjava_/article/details/68941436

(1)梯度不稳定问题:

什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。

原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。

(2)梯度消失(vanishing gradient problem):

原因:例如三个隐层、单神经元网络:


则可以得到:


然而,sigmoid方程的导数曲线为:


可以看到,sigmoid导数的最大值为1/4,通常abs(w)<1,则:


前面的层比后面的层梯度变化更小,故变化更慢,从而引起了梯度消失问题。

(3)梯度爆炸(exploding gradient problem):

当权值过大,前面层比后面层梯度变化更快,会引起梯度爆炸问题。

(4)sigmoid时,消失和爆炸哪个更易发生?

量化分析梯度爆炸出现时a的树枝范围:因为sigmoid导数最大为1/4,故只有当abs(w)>4时才可能出现


由此计算出a的数值变化范围很小,仅仅在此窄范围内会出现梯度爆炸问题。而最普遍发生的是梯度消失问题。

(5)如何解决梯度消失和梯度爆炸?

使用ReLU,maxout等替代sigmoid。(具体细节请看博主之前神经网络激活函数部分)

区别:(1)sigmoid函数值在[0,1],ReLU函数值在[0,+无穷],所以sigmoid函数可以描述概率,ReLU适合用来描述实数;(2)sigmoid函数的梯度随着x的增大或减小和消失,而ReLU不会。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页