基于Keras的卷积自编码器

代码:

import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Input, add
from keras.layers import Layer, Dense, Dropout, Activation, Flatten, Reshape
from keras import regularizers
from keras.optimizers import Adam
from keras.regularizers import l2
from keras.layers.convolutional import Conv2D, MaxPooling2D, UpSampling2D, ZeroPadding2D
from keras.utils import np_utils
import warnings
import tensorflow as tf
from keras import backend as K

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)
K.set_session(sess)
warnings.filterwarnings("ignore")


class CNN_VAE():
    def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值