【初等数论】阶断性总结(未完结)

导言

数论是信息竞赛 ( ( (当然数竞也要学 ) ) )中一重大分支,其主要研究整数环的整除理论及同余理论,此外它也包括了连分数理论和少许不定方程的问题。本质上说,初等数论的研究手段局限在整除性质上

大纲

  • 整除
  • 模运算
  • 同余
  • 排列组合
  • 质数筛
  • 最大公约数与最小公倍数
  • 裴蜀定理
  • 拓展欧几里得
  • 费马小定理
  • 逆元

一.整除

定义:

a , b ∈ Z a,b \in \mathbb{Z} a,bZ a ≠ 0 a\neq0 a=0,如果 ∃ \exists 一个数 q ∈ Z q \in \mathbb{Z} qZ,使得 a ⋅ q = b a \cdot q = b aq=b, 则 b b b能被 a a a整除, 记作 a ∣ b a \mid b ab, 否则 a ∤ b a \nmid b ab

性质

①:
如果 a ∣ b a \mid b ab,且 b ∣ c b \mid c bc,则 a ∣ c a \mid c ac
证明:

∵ \because a ∣ b a \mid b ab
∴ a ⋅ x = b ( x ∈ Z \therefore a \cdot x = b(x \in \mathbb{Z} ax=b(xZ x ≠ 0 ) x\neq0) x=0)
∵ \because a ∣ c a \mid c ac
∴ b ⋅ y = c ( y ∈ Z \therefore b \cdot y = c(y \in \mathbb{Z} by=c(yZ y ≠ 0 ) y\neq0) y=0)
∵ \because a ⋅ x ⋅ y = c a \cdot x \cdot y = c axy=c
∴ a ∣ c \therefore a \mid c ac

②:
a ∣ b a \mid b ab a ∣ c a \mid c ac,则 a ∣ ( b ⋅ x + c ⋅ y ) a \mid (b \cdot x + c \cdot y) a(bx+cy)
证明:

b = a ⋅ q b=a \cdot q b=aq c = a ⋅ p c=a \cdot p c=ap
那么 b ⋅ x + c ⋅ y = a ⋅ q ⋅ x + a ⋅ q ⋅ y = a ( q ⋅ x + p ⋅ y ) b \cdot x+c \cdot y=a \cdot q \cdot x+a \cdot q \cdot y=a(q \cdot x+p \cdot y) bx+cy=aqx+aqy=a(qx+py)
∵ \because a ∣ a ⋅ ( q ⋅ x + p ⋅ y ) a \mid a \cdot(q \cdot x+p \cdot y) aa(qx+py)
∴ a ∣ ( b ⋅ x + c ⋅ y ) \therefore a \mid (b \cdot x + c \cdot y) a(bx+cy)

③:
m ≠ 0 m \neq 0 m=0,则 a ∣ b a \mid b ab 等价于 a ⋅ m ∣ b ⋅ m a \cdot m \mid b \cdot m ambm
证明:

b = a ⋅ x ( x ∈ Z ) b = a \cdot x(x \in \mathbb{Z}) b=ax(xZ)
∵ \because a ⋅ m ∣ a ⋅ m ⋅ x a \cdot m \mid a \cdot m \cdot x amamx
∴ a ⋅ m ∣ b ⋅ m \therefore a \cdot m \mid b \cdot m ambm

④:
设整数 x , y x,y x,y 满足下式: a ⋅ x + b ⋅ y = 1 , a \cdot x+b \cdot y=1, ax+by=1, a ∣ n a \mid n an b ∣ n b \mid n bn,那么 a ⋅ b ∣ n a \cdot b \mid n abn
证明:

证明 a ⋅ b ∣ n a \cdot b \mid n abn 即证明 n a ⋅ b ∈ Z \dfrac{n}{a \cdot b}\in \mathbb{Z} abnZ
a = n k 1   ( k 1 ∈ Z ) , b = n k 2   ( k 2 ∈ Z ) a=\dfrac{n}{k_1}\ (k1\in \mathbb{Z}) , b= \dfrac{n}{k_2}\ (k2\in \mathbb{Z}) a=k1n (k1Z),b=k2n (k2Z)
那么 n a ⋅ b = n n 2 k 1 ⋅ k 2 = k 1 ⋅ k 2 n \dfrac{n}{a \cdot b}= \dfrac{n}{\dfrac{n^2}{k1 \cdot k2}}= \dfrac{k1 \cdot k2}{n} abn=k1k2n2n=nk1k2
∵ \because a ⋅ x + b ⋅ y = 1 a \cdot x+b \cdot y=1 ax+by=1
∴ \therefore n ⋅ x k 1 + n ⋅ y k 2 = 1 \dfrac{n \cdot x}{k_1}+\dfrac{n \cdot y}{k_2}= 1 k1nx+k2ny=1
∴ \therefore n ⋅ x + n ⋅ y = k 1 ⋅ k 2 n \cdot x+n \cdot y=k1 \cdot k2 nx+ny=k1k2
∴ \therefore n ⋅ ( x + y ) = k 1 ⋅ k 2 n \cdot (x+y)=k1 \cdot k2 n(x+y)=k1k2
∴ \therefore k 1 ⋅ k 2 n = x + y \dfrac{k1 \cdot k2}{n}=x+y nk1k2=x+y
∵ x , y ∈ Z \because x,y \in \mathbb{Z} x,yZ
∴ k 1 ⋅ k 2 n ∈ Z \therefore \dfrac{k1 \cdot k2}{n} \in \mathbb{Z} nk1k2Z
∵ \because n a ⋅ b \dfrac{n}{a \cdot b} abn = = = k 1 ⋅ k 2 n \dfrac{k1 \cdot k2}{n} nk1k2

∴ n a ⋅ b ∈ Z \therefore \dfrac{n}{a \cdot b} \in \mathbb{Z} abnZ
∴ a ⋅ b ∣ n \therefore a \cdot b \mid n abn

⑤:若 b = q ⋅ d + c b=q \cdot d+c b=qd+c,那么 d ∣ b d \mid b db 的充要条件是 d ∣ c d \mid c dc
备注:充要条件 即充分必要条件,意思是说,如果能从命题 p p p推出命题 q q q,而且也能从命题 q q q推出命题 p p p ,则称 p p p q q q的充分必要条件,且 q q q也是 p p p的充分必要条件
( 1 ) (1) (1)

d ∣ b d \mid b db, 则 b b b 可以表示为 p ⋅ d ( p ∈ Z ) p \cdot d(p \in \mathbb{Z}) pd(pZ)
∴ p ⋅ d = q ⋅ d + c \therefore p \cdot d=q \cdot d+c pd=qd+c
∴ ( p − q ) ⋅ d = c \therefore (p-q) \cdot d=c (pq)d=c
∵ ( p − q ) ∈ Z \because (p-q) \in \mathbb{Z} (pq)Z
∴ d ∣ c \therefore d \mid c dc

( 2 ) (2) (2)

d ∣ c d \mid c dc, 则 c c c 可以表示为 p ⋅ d ( p ∈ Z ) p \cdot d(p \in \mathbb{Z}) pd(pZ)
b = q ⋅ d + p ⋅ d = ( q + p ) ⋅ d b=q \cdot d+p \cdot d=(q+p)\cdot d b=qd+pd=(q+p)d
∴ d ∣ b \therefore d \mid b db

二.模运算

定义:

对于整数 a , b a,b a,b,其中 b ≠ 0 b \neq 0 b=0,求 a a a整除 b b b的余数,称为 a a a b b b,记为 a a a m o d mod mod b b b

①分配率

1 ) ( a + b ) (a+b) (a+b) m o d mod mod c = ( a c=(a c=(a m o d mod mod c + b c+b c+b m o d mod mod c ) c) c) m o d mod mod c c c
证明:

a = k 1 ⋅ c + r 1 ( k 1 ∈ Z ) a=k_1 \cdot c+r_1(k_1 \in \mathbb{Z}) a=k1c+r1(k1Z) b = k 2 ⋅ c + r 2 ( k 2 ∈ Z ) b=k_2 \cdot c+r_2(k_2 \in \mathbb{Z}) b=k2c+r2(k2Z)
( a + b ) (a+b) (a+b) m o d mod mod c c c
= [ ( k 1 + k 2 ) ⋅ c + r 1 + r 2 ] =[(k1+k2) \cdot c+r1+r2] =[(k1+k2)c+r1+r2] m o d mod mod c c c
= ( r 1 + r 2 ) =(r1+r2) =(r1+r2) m o d mod mod
( a (a (a m o d mod mod c + b c+b c+b m o d mod mod c ) c) c) m o d mod mod c c c
= ( r 1 + r 2 ) =(r1+r2) =(r1+r2) m o d mod mod c c c
$\therefore $ ( a + b ) (a+b) (a+b) m o d mod mod c = ( a c=(a c=(a m o d mod mod c + b c+b c+b m o d mod mod c ) c) c) m o d mod mod c c c

2 ) ( a − b ) (a-b) (ab) m o d mod mod c = ( a c=(a c=(a m o d mod mod c − b c-b cb m o d mod mod c ) c) c) m o d mod mod c c c

与加法分配率类似,故不予证明

3 ) ( a ⋅ b ) (a \cdot b) (ab) m o d mod mod c = ( a c=(a c=(a m o d mod mod c ⋅ b c \cdot b cb m o d mod mod c ) c) c) m o d mod mod c c c

与加法分配率类似,故不予证明

4 ) ( a b ) (a^b) (ab) m o d mod mod c = ( a c=(a c=(a m o d mod mod c c c) b ^b b m o d mod mod c c c

与加法分配率类似,故不予证明

②放缩性

1 ) a a a m o d mod mod b = c b=c b=c,则 a ⋅ d a \cdot d ad m o d mod mod b ⋅ d = c ⋅ d b \cdot d=c \cdot d bd=cd

证明:不妨设 a = k ⋅ b + c ( k ∈ Z ) a=k \cdot b+c(k \in \mathbb{Z}) a=kb+c(kZ)
( a ⋅ b ) (a \cdot b) (ab) m o d mod mod ( b ⋅ d ) = ( k ⋅ b ⋅ d + c ⋅ d ) (b \cdot d)=(k \cdot b \cdot d+c \cdot d) (bd)=(kbd+cd) m o d mod mod ( b ⋅ d ) = c ⋅ d (b \cdot d)=c \cdot d (bd)=cd m o d mod mod b ⋅ d b \cdot d bd
∵ \because a a a m o d mod mod b = c b=c b=c
∴ c < b \therefore c<b c<b
∴ c ⋅ d < b ⋅ d \therefore c \cdot d<b \cdot d cd<bd
∴ \therefore c ⋅ d c \cdot d cd m o d mod mod b ⋅ d = c ⋅ d b \cdot d=c \cdot d bd=cd
∴ \therefore a ⋅ d a \cdot d ad m o d mod mod b ⋅ d = c ⋅ d b \cdot d=c \cdot d bd=cd

2 ) a a a m o d mod mod b = c b=c b=c d ∣ a d \mid a da d ∣ b d \mid b db , a ÷ d a \div d a÷d m o d mod mod b ÷ d = c ÷ d b \div d=c \div d b÷d=c÷d

证明:不妨设 a = k 1 ⋅ d , b = k 2 ⋅ d a=k_1 \cdot d,b=k_2 \cdot d a=k1d,b=k2d
a a a m o d mod mod b = k 1 ⋅ d b=k_1 \cdot d b=k1d m o d mod mod k 2 ⋅ d = k_2 \cdot d= k2d= d ⋅ ( d \cdot( d( k 1 k_1 k1 m o d mod mod k 2 ) k_2) k2)
a ÷ d a \div d a÷d m o d mod mod b ÷ d = k 1 b \div d=k1 b÷d=k1 m o d mod mod k 2 = c k2=c k2=c

三.同余

概念:

m m m是给定的正整数,若满足 m ∣ ( a − b ) m \mid (a-b) m(ab),则称 a a a b b b对模 m m m同余,记作 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),若 m ∤ ( a − b ) m \nmid (a-b) m(ab),则 a a a b b b对模 m m m不同余

性质

① 自反性: a ≡ a ( m o d m ) a \equiv a \pmod m aa(modm)

显然,故不予证明

② 对称性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 b ≡ a ( m o d m ) b \equiv a \pmod m ba(modm)
证明:

∵ a ≡ b ( m o d m ) \because a \equiv b \pmod m ab(modm)
∴ \therefore a a a m o d mod mod m = b m=b m=b m o d mod mod m m m
∴ b ≡ a ( m o d m ) \therefore b \equiv a \pmod m ba(modm)

③ 传递性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm) b ≡ c ( m o d m ) b \equiv c \pmod m bc(modm),那么 a ≡ c ( m o d m ) a \equiv c \pmod m ac(modm)
证明:

∵ a ≡ b ( m o d m ) \because a \equiv b \pmod m ab(modm)
∴ \therefore a a a m o d mod mod m = b m=b m=b m o d mod mod m m m
∵ b ≡ c ( m o d m ) \because b \equiv c \pmod m bc(modm)
∴ \therefore c c c m o d mod mod m = b m=b m=b m o d mod mod m m m
∴ \therefore a a a m o d mod mod m = c m=c m=c m o d mod mod m m m
∴ a ≡ c ( m o d m ) \therefore a \equiv c \pmod m ac(modm)

④ 同加性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 a + c ≡ b + c ( m o d m ) a+c \equiv b+c \pmod m a+cb+c(modm)
证明:

∵ a ≡ b ( m o d m ) \because a \equiv b \pmod m ab(modm)
∴ \therefore a a a m o d mod mod m = b m=b m=b m o d mod mod m m m
∵ a + c \because a+c a+c m o d mod mod m = a m=a m=a m o d mod mod m + c m+c m+c m o d mod mod m m m
∵ b + c \because b+c b+c m o d mod mod m = b m=b m=b m o d mod mod m + c m+c m+c m o d mod mod m m m
∴ \therefore a + c a+c a+c m o d mod mod m = b + c m=b+c m=b+c m o d mod mod m m m
∴ \therefore a + c ≡ b + c ( m o d m ) a+c \equiv b+c \pmod m a+cb+c(modm)

⑤ 同减性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 a − c ≡ b − c ( m o d m ) a-c \equiv b-c \pmod m acbc(modm)

与同加性证明类似,故不予证明

⑦ 同减性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 a − c ≡ b − c ( m o d m ) a-c \equiv b-c \pmod m acbc(modm)

与同加性证明类似,故不予证明

⑥ 同乘性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 a ⋅ c ≡ b ⋅ c ( m o d m ) a \cdot c \equiv b \cdot c \pmod m acbc(modm)

与同加性证明类似,故不予证明

⑧ 同除性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),且 c ∣ a c \mid a ca c ∣ b c \mid b cb ( a , b ) = 1 (a,b)=1 (a,b)=1,那么$ \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod m$
证明:

不妨设 a = k 1 ⋅ m + r , b = k 2 ⋅ m + r a=k1 \cdot m+r,b=k2 \cdot m + r a=k1m+r,b=k2m+r
$ \dfrac{a-b}{c}= \dfrac{(k1-k2) \cdot m}{c}$
$ \because c \mid a$ 且 c ∣ b c \mid b cb
$ \therefore \dfrac{a-b}{c} \in \mathbb{Z}$
$ \therefore \dfrac{(k1-k2) \cdot m}{c} \in \mathbb{Z}$
$ \because (a,b)=1$
$ \therefore c \mid (k1-k2)$
$ \therefore m \mid \dfrac{(k1-k2) \cdot m}{c}$
$ \therefore m \mid \dfrac{a-b}{c})$
$ \therefore \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod m$

⑨ 同幂性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm),那么 a c ≡ b c ( m o d m ) a^c \equiv b^c \pmod m acbc(modm)
证明:

∵ a c = ( a \because a^c = (a ac=(a m o d mod mod m ) c m)^c m)c
∵ b c = ( b \because b^c = (b bc=(b m o d mod mod m ) c m)^c m)c
∴ a c = b c \therefore a^c = b^c ac=bc
∴ a c ≡ b c ( m o d m ) \therefore a^c \equiv b^c \pmod m acbc(modm)

⑩ 互加性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm) c ≡ d ( m o d m ) c \equiv d \pmod m cd(modm),那么 a + c ≡ b + d ( m o d m ) a+c \equiv b+d \pmod m a+cb+d(modm)
证明:

不妨设
a = k 1 ⋅ m + r 1 a=k_1 \cdot m+r_1 a=k1m+r1
b = k 2 ⋅ m + r 1 b=k_2 \cdot m+r_1 b=k2m+r1
c = k 3 ⋅ m + r 2 c=k_3 \cdot m+r_2 c=k3m+r2
d = k 4 ⋅ m + r 2 d=k_4 \cdot m + r_2 d=k4m+r2
那么 ( a + c ) (a+c) (a+c) m o d mod mod m = ( r 1 + r 2 ) m=(r1+r2) m=(r1+r2) m o d mod mod m m m
( b + d ) (b+d) (b+d) m o d mod mod m = ( r 1 + r 2 ) m=(r1+r2) m=(r1+r2) m o d mod mod m m m
∴ a + c ≡ b + d ( m o d m ) \therefore a+c \equiv b+d \pmod m a+cb+d(modm)

? 互乘性:若 a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm) c ≡ d ( m o d m ) c \equiv d \pmod m cd(modm),那么 a ⋅ c ≡ b ⋅ d ( m o d m ) a \cdot c \equiv b \cdot d \pmod m acbd(modm)
证明:

a ⋅ c a \cdot c ac m o d mod mod m = a m=a m=a m o d mod mod m ⋅ c m \cdot c mc m o d mod mod m m m
b ⋅ d b \cdot d bd m o d mod mod m = b m=b m=b m o d mod mod m ⋅ d m \cdot d md m o d mod mod m m m
∵ a \because a a m o d mod mod m = b m=b m=b m o d mod mod m m m
∵ c \because c c m o d mod mod m = d m=d m=d m o d mod mod m m m
∴ a ⋅ c ≡ b ⋅ d ( m o d m ) \therefore a \cdot c \equiv b \cdot d \pmod m acbd(modm)

推论

①:若2能整除a末位,则 2 ∣ a 2 \mid a 2a
证明:

a a a 为 $ \overline {k_1k_2k_3k_4k_5 \cdots k_n}$
a a a m o d mod mod 2 = ( k 1 k 2 k 3 k 4 k 5 ⋯ k n − 1 ‾ × 10 + k n ) 2=(\overline {k_1k_2k_3k_4k_5 \cdots k_{n-1}}\times 10 + k_n) 2=(k1k2k3k4k5kn1×10+kn) m o d mod mod 2 = k n 2=k_n 2=kn m o d mod mod 2 2 2

②:若4能整除a末两位,则 4 ∣ a 4 \mid a 4a
证明:

a a a 为 $ \overline {k_1k_2k_3k_4k_5 \cdots k_n}$
a a a m o d mod mod 4 = ( k 1 k 2 k 3 k 4 k 5 ⋯ k n − 2 ‾ × 100 + k n ) 4=(\overline {k_1k_2k_3k_4k_5 \cdots k_{n-2}}\times 100 + k_n) 4=(k1k2k3k4k5kn2×100+kn) m o d mod mod 4 = k n − 1 k n ‾ 4=\overline {k_{n-1}k_n} 4=kn1kn m o d mod mod 4 4 4

③:推广,若 2 n 2^n 2n能整除a的末 n n n位,则 2 n ∣ a 2^n \mid a 2na

证法同①②,故不予证明

④:若 3 3 3能整除 a a a的各个位之和,则 3 ∣ a 3 \mid a 3a
证明:

a a a 为 $ \overline {k_1k_2k_3k_4}$
a a a m o d mod mod 3 = ( k 1 ⋅ ( 999 + 1 ) + k 2 ⋅ ( 99 + 1 ) + k 3 ⋅ ( 9 + 1 ) + k 4 ) 3=(k_1 \cdot (999 + 1) + k_2 \cdot (99+1)+k_3 \cdot (9+1)+k_4) 3=(k1(999+1)+k2(99+1)+k3(9+1)+k4) m o d mod mod 3 = ( k 1 + k 2 + k 3 + k 4 ) 3=(k_1+k_2+k_3+k_4) 3=(k1+k2+k3+k4) m o d mod mod 3 3 3

⑤:若 9 9 9能整除 a a a的各个位之和,则 9 ∣ a 9 \mid a 9a

证法同④,故不予证明

⑥:若 11 11 11能整除 a a a的偶数位之和与奇数位之和的差,则 11 ∣ a 11 \mid a 11a
证明:

a a a 为 $ \overline {k_1k_2k_3k_4k_5k_6k_7}$
a a a m o d mod mod 11 = ( k 1 ⋅ ( 999999 + 1 ) + k 2 ⋅ ( 100001 − 1 ) + k 3 ⋅ ( 9999 + 1 ) + k 4 ⋅ ( 1001 − 1 ) + k 5 ⋅ ( 99 + 1 ) + k 6 ⋅ ( 11 − 1 ) + k 7 ) ) 11=(k_1 \cdot (999999 + 1) + k_2 \cdot (100001-1)+k_3 \cdot (9999+1)+k_4 \cdot (1001-1) + k_5 \cdot (99+1) + k_6 \cdot (11-1) + k_7)) 11=(k1(999999+1)+k2(1000011)+k3(9999+1)+k4(10011)+k5(99+1)+k6(111)+k7)) m o d mod mod 11 = ( k 1 + k 2 + k 3 + k 4 ) 11=(k_1+k_2+k_3+k_4) 11=(k1+k2+k3+k4) m o d mod mod 11 11 11

⑦:若能被 7 7 7 11 11 11 13 13 13整除的数的特征是,这个数末三位与末三位以前所分别组成的数字的差能被 7 7 7 11 11 11 13 13 13整除
证明:

结论转化:能被 7 7 7 11 11 11 13 13 13整除的数即是能被 1001 1001 1001整除的数
a a a 为 $ \overline {k_1k_2k_3k_4k_5k_6k_7}$
a a a m o d mod mod 1001 = ( k 1 k 2 k 3 k 4 ‾ ⋅ ( 1001 − 1 ) + k 1 k 2 k 3 ‾ ) 1001=(\overline {k_1k_2k_3k_4} \cdot (1001-1) + \overline{k_1k_2k_3}) 1001=(k1k2k3k4(10011)+k1k2k3) m o d mod mod 1001 = ( k 1 k 2 k 3 ‾ − k 1 k 2 k 3 k 4 ‾ ) 1001=(\overline{k_1k_2k_3}- \overline {k_1k_2k_3k_4}) 1001=(k1k2k3k1k2k3k4) m o d mod mod 1001 1001 1001

四.排列组合

定义:

  • 排列:给定的元素中,取出指定个数的元素,进行排序,记为 A ( A r r a n g e m e n t ) A(Arrangement) A(Arrangement)
  • 组合: 给定的元素中,取出指定个数的元素,不考虑排序,记为 C ( C o m b i n a t i o n ) C(Combination) C(Combination)

计算方法

  • 排列:情景创造,设从 n n n个小球中取出 m m m个放入指定篮子里,则第一个篮子有 n n n种选择,第二个篮子有 n − 1 n-1 n1种选择,以此类推,直至最后一个篮子有 n − m + 1 n-m+1 nm+1种选择,根据乘法原理,故 A m n = ∏ i = m − n + 1 n i A^n_m=\prod_{i=m-n+1}^n \Bbb{i}{} Amn=i=mn+1ni,即 n ! ( n − m ) ! \dfrac{n!}{(n-m)!} (nm)!n!

  • 组合:因为不考虑排序,所以排列即是在每个合法组合中交换两数位置,最终每个组合会多 m ! m! m!种可能,所以 C m n = A m n ÷ m ! = n ! ( n − m ) ! ⋅ m ! C^n_m=A^n_m \div m!=\dfrac{n!}{(n-m)! \cdot m!} Cmn=Amn÷m!=(nm)!m!n!

盒子与球模型

①球相同,盒不同,无空盒
推导:

设有 n n n个小球和 m m m个盒子
运用隔板法,要满足 m m m个盒子无空盒,则需要 ( m − 1 ) (m-1) (m1)个隔板,而每两个小球之间有一个缝隙,故有 ( n − 1 ) (n-1) (n1)个可安插隔板的位置,因为球相同,故使用组合数,最后答案为 C n − 1 m − 1 C^{m-1}_{n-1} Cn1m1

如下图,红色代表安插隔板的位置

②球相同,盒不同,有空盒
推导:

∵ \because 允许空盒
∴ \therefore 我们先在每个盒子里放上一个虚拟的球,后按无空盒问题处理即可,最后答案为 C n + m − 1 m − 1 C^{m-1}_{n+m-1} Cn+m1m1

③球不同,盒相同,无空盒
推导:

定义 d p [ i ] [ j ] dp[i][j] dp[i][j] i i i个小球和 j j j个盒子的情况
因为不允许有空盒,所以对于第 i i i个盒子来说,只需考虑两种情况:该小球独占一个盒子和与其他小球用这 j j j个盒子,因为球不同,所以对于第二种情况来说,有 j j j种可能,而对于第一种情况来说,因为盒相同,所以有且只有一种可能
故状态转移方程应为 d p i , j = d p i − 1 , j − 1 + d p i − 1 , j dp_{i,j}=dp_{i-1,j-1}+dp_{i-1,j} dpi,j=dpi1,j1+dpi1,j

④球不同,盒相同,有空盒
推导:

因为与③的差异只在于允许空盒,那么我们只需要在③的基础上枚举有多少个空盒,然后把其累加即可
故答案为 ∑ i = 1 m d p n , i \sum_{i=1}^{m} dp_{n,i} i=1mdpn,i

⑤球不同,盒不同,无空盒
推导:

该模型与与③类似,因为盒不同,所以对于③的每个合法组合都多了 m ! m! m!种可能
故答案为 d p n , m ⋅ m ! dp_{n,m} \cdot m! dpn,mm!

⑥球不同,盒不同,有空盒
推导:

对于每个小球来说都有 m m m种放法
故答案为 m n m^n mn

⑦球相同,盒相同,无空盒
推导:

状态仍旧为 d p i , j dp_{i,j} dpi,j
对于 d p i , k dp_{i,k} dpi,k,因为不允许有空盒,所以我们先借 j j j个小球放入 j j j个盒子里,然后再由$ dp_{i-j,k}(1 \leq k \leq j)$转移过来
故状态转移方程为 d p i , j = ∑ k = 1 j d p i − j , k dp_{i,j}=\sum_{k=1}^{j} dp_{i-j,k} dpi,j=k=1jdpij,k
答案为 ∑ i = 1 m d p n − m , i \sum_{i=1}^{m} dp_{n-m,i} i=1mdpnm,i

⑧球相同,盒相同,有空盒
推导:

与②到③的思路无异,先把每个盒子里放入一个虚拟的球,然后按⑦解决即可
故答案为 d p [ n + m ] [ m ] dp[n+m][m] dp[n+m][m]

五.质数筛

相关概念

  • 质数:大于 1 1 1的自然数中除了 1 1 1和该数自身外,无法被其他自然数整除的数
  • 筛法:顾名思义,就是把一些特定的数筛出去。这里的质数筛法一般指的是把一些数的倍数筛掉。筛到第 n n n个数了,比 n n n小的数就都是质数了

① 暴力筛法

即把 ( 1 , n ] (1,n] (1,n]中所有的倍数筛去,留下的即为质数
时间复杂度: O ( n O(n O(n ln ⁡ \ln ln n ) n) n)
核心代码:

for (int i = 2 ; i * i <= n ; i ++) {
	for (int j = i ; j * i <= n ; j ++) {
		vis[i * j] = 1;
	}
}

② 埃拉托斯特尼筛法(埃筛)

一个数如果有因子,那它一定有质因子,所以我们只需把质数的倍数筛去即可
时间复杂度: O ( n O(n O(n ln ⁡ \ln ln n ) n) n)
核心代码:

for (int i = 2 ; i * i <= n ; i ++) {
	if (vis[i]) continue;
	for (int j = i ; j * i <= n ; j ++) {
		vis[i * j] = 1;
	}
}

③ 欧拉筛(线性筛)

埃筛重复计算的原因:一个数被它的多个质因子筛了多次,造成了耗时的增长
解决方案:确保一个数只被它的最小质因子筛掉,这就是欧拉筛的原理

  • 建立一个数组 p r i m e prime prime用来保存已知的质数
  • 枚举 i ( 1 ≤ i ≤ n ) i(1 \leq i \leq n) i(1in),把 i i i作为倍数,并把 p r i m e j ( 1 ≤ j ≤ l e n ) prime_j(1 \leq j \leq len) primej(1jlen) i i i的乘积筛去
  • 若当前 p r i m e j prime_j primej i i i的倍数,则 b r e a k break break,因为 i i i的倍数一定会被 p r i m e j prime_j primej筛掉
  • p r i m e prime prime里存储的则是 1 − n 1-n 1n的质数

时间复杂度: O ( n ) O(n) O(n)
核心代码:

for (int i = 2 ; i <= n ; i ++) {
	if (!vis[i]) a[++ cnt] = i;
	for (int j = 1 ; j <= cnt && a[j] * i <= n ; j ++) {
		vis[i * a[j]] = 1;
		if (i % a[j] == 0) break;
	}
}

六.最大公约数与最小公倍数

定义

  • g c d gcd gcd: 一般设 a 1 , a 2 , a 3 ⋯ a k a_1,a_2,a_3 \cdots a_k a1,a2,a3ak k k k Z + \mathbb{Z}^+ Z+,如果存在一个正整数 d d d,使得 d ∣ a 1 , d ∣ a 2 , d ∣ a k d \mid a_1,d \mid a_2,d \mid a_k da1,da2,dak,那么 d d d则为 a 1 a 2 ⋯ a k a_1a_2 \cdots a_k a1a2ak的公约数
  • l c m lcm lcm: 一般设 a 1 , a 2 , a 3 ⋯ a k a_1,a_2,a_3 \cdots a_k a1,a2,a3ak k k k Z + \mathbb{Z}^+ Z+,如果存在一个正整数 d d d,使得 a 1 ∣ d , a 2 ∣ d , a k ∣ d a_1 \mid d,a_2 \mid d,a_k \mid d a1d,a2d,akd,那么 d d d则为 a 1 a 2 ⋯ a k a_1a_2 \cdots a_k a1a2ak的公倍数

定理

l c m ( a , b ) ⋅ g c d ( a , b ) = a ⋅ b lcm(a,b) \cdot gcd(a,b)=a \cdot b lcm(a,b)gcd(a,b)=ab
证明:

a , b a,b a,b进行质因子分解
a , b a,b a,b质因子集合并为 { P 1 , P 2 ⋯   , p n } \{ P_1,P_2 \cdots,p_n \} {P1,P2,pn}
那么,可设 a = ∏ i = 1 n P i k i a=\prod_{i=1}^n P_i^{k_i} a=i=1nPiki b = ∏ i = 1 n P i j i b=\prod_{i=1}^n P_i^{j_i} b=i=1nPiji
g c d ( a , b ) = ∏ i = 1 n P i m i n ( k i , j i ) gcd(a,b)=\prod_{i=1}^n P_i^{min(k_i,j_i)} gcd(a,b)=i=1nPimin(ki,ji)
l c m ( a , b ) = ∏ i = 1 n P i m a x ( k i , j i ) lcm(a,b)=\prod_{i=1}^n P_i^{max(k_i,j_i)} lcm(a,b)=i=1nPimax(ki,ji)
∵ m i n ( k i , j i ) + m a x ( k i , j i ) = k i + j i \because min(k_i,j_i)+max(k_i,j_i)=k_i+j_i min(ki,ji)+max(ki,ji)=ki+ji
∴ g c d ( a , b ) ⋅ l c m ( a , b ) = ∏ i = 1 n P i k i + j i = a ⋅ b \therefore gcd(a,b) \cdot lcm(a,b)=\prod_{i=1}^n P_i^{k_i+j_i}=a \cdot b gcd(a,b)lcm(a,b)=i=1nPiki+ji=ab

② 辗转相除法: g c d ( a , b ) = g c d ( b , a gcd(a,b)=gcd(b,a gcd(a,b)=gcd(b,a m o d mod mod b ) b) b)
证明:

a = k b + r ( k , r ∈ Z ) , d = g c d ( a , b ) a=kb+r(k,r \in \mathbb{Z}),d=gcd(a,b) a=kb+r(k,rZ),d=gcd(a,b)
∵ r = a − k b \because r=a-kb r=akb
∴ r d = a d − k b d \therefore \dfrac{r}{d}=\dfrac{a}{d}-\dfrac{kb}{d} dr=dadkb
∵ a d , k b d ∈ Z \because \dfrac{a}{d},\dfrac{kb}{d} \in \mathbb{Z} da,dkbZ
∴ d ∣ r \therefore d \mid r dr
∵ d \because d d b b b的最大因子且为 a a a m o d mod mod b b b的因子
∴ g c d ( b , a \therefore gcd(b,a gcd(b,a m o d mod mod b ) = d b)=d b)=d

七.裴蜀定理

公式

对于不定方程 a x + b y = m ax+by=m ax+by=m,其有解的充要条件是 g c d ( a , b ) ∣ m gcd(a,b) \mid m gcd(a,b)m

  • 对于充分性,后在扩展欧几里得提及
  • 对于必要性
    证明:

∵ a x + b y = m \because ax+by=m ax+by=m
∴ \therefore 有整数 x , y x,y x,y使得 a x + b y = m ax+by=m ax+by=m
∵ g c d ( a , b ) ∣ a \because gcd(a,b) \mid a gcd(a,b)a
∵ g c d ( a , b ) ∣ b \because gcd(a,b) \mid b gcd(a,b)b
∴ g c d ( a , b ) ∣ ( a ⋅ x + b ⋅ y ) \therefore gcd(a,b) \mid (a \cdot x+b \cdot y) gcd(a,b)(ax+by)
∴ g c d ( a , b ) ∣ m \therefore gcd(a,b) \mid m gcd(a,b)m

引理

① 对于 ∀ x , y ∈ Z \forall x,y \in \mathbb{Z} x,yZ,函数 f ( x , y ) = a ⋅ x + b ⋅ y f(x,y)=a \cdot x+b \cdot y f(x,y)=ax+by的最小正整数取值为 g c d ( a , b ) gcd(a,b) gcd(a,b)
证明:

设集合 A = { m ( a ⋅ x + b ⋅ y = m ) , x , y ∈ Z A=\{m(a \cdot x+b \cdot y=m),x,y \in \mathbb{Z} A={m(ax+by=m),x,yZ
结论转化:设 S S S A A A中最小的元素,证明 g c d ( a , b ) = s gcd(a,b)=s gcd(a,b)=s 就等价于证明 g c d ( a , b ) ∣ s gcd(a,b) \mid s gcd(a,b)s s ∣ g c d ( a , b ) s \mid gcd(a,b) sgcd(a,b)
∵ S \because S S A A A集中最小元素
$ \therefore $满足线性方程 a ⋅ x 0 + b ⋅ y 0 = S a \cdot x_0+b \cdot y_0=S ax0+by0=S
∵ g c d ( a , b ) ∣ a \because gcd(a,b) \mid a gcd(a,b)a
∴ g c d ( a , b ) ∣ a ⋅ x 0 \therefore gcd(a,b) \mid a \cdot x_0 gcd(a,b)ax0
同理 g c d ( a , b ) ∣ b ⋅ y 0 gcd(a,b) \mid b \cdot y_0 gcd(a,b)by0
∴ g c d ( a , b ) ∣ S \therefore gcd(a,b) \mid S gcd(a,b)S
a = q ⋅ s + r ( 0 ≤ r < s ) a=q \cdot s+r(0 \leq r < s) a=qs+r(0r<s)
r r r
= a − q ⋅ s =a-q \cdot s =aqs
= a − q ⋅ ( a ⋅ x 0 + b ⋅ y 0 ) =a-q \cdot (a \cdot x_0 + b \cdot y_0) =aq(ax0+by0)
= a ⋅ ( 1 − q ⋅ x 0 ) + b ⋅ ( − q ⋅ y 0 ) =a \cdot (1-q \cdot x_0)+ b \cdot(- q \cdot y_0) =a(1qx0)+b(qy0)
∵ a ⋅ ( 1 − q ⋅ x 0 ) + b ⋅ ( − q ⋅ y 0 ) \because a \cdot (1-q \cdot x_0)+ b \cdot(- q \cdot y_0) a(1qx0)+b(qy0) a ⋅ x 0 + b ⋅ y 0 a \cdot x_0+b \cdot y_0 ax0+by0是一致的线性方程
∴ r ∈ A \therefore r \in A rA
∵ S \because S S A A A中最小的正整数,且 ( 0 ≤ r < s ) (0 \leq r < s) (0r<s)
∴ S = 0 \therefore S=0 S=0
∴ S ∣ a \therefore S \mid a Sa
∴ S ∣ b \therefore S \mid b Sb
∴ S ∣ g c d ( a , b ) \therefore S \mid gcd(a,b) Sgcd(a,b)

② 如果 a , b a,b a,b为正整数,且 ( a , b ) = 1 (a,b)=1 (a,b)=1,则不存在小于 b b b的正整数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值