【学习笔记】CF1098F Ж-function

文章讨论了一种涉及后缀树和最近公共祖先(LCA)的复杂计算问题,通过离线处理和树分治策略进行优化,最终实现了时间复杂度为O(nlog^2n)的解决方案。文章提到了树剖等树上数据结构的难度,并给出了相应的C++代码实现。
摘要由CSDN通过智能技术生成

时间过的真快啊,上次看到这道题都是一个月以前了。

先数据删除一波。

将原串翻转,转化成求这个式子: ∑ i = l r min ⁡ ( i − l + 1 , len [ Lca ( s i , s r ) ] ) \sum_{i=l}^r\min(i-l+1,\text{len}[\text{Lca}(s_i,s_r)]) i=lrmin(il+1,len[Lca(si,sr)])。其中 s i s_i si表示前缀对应的后缀树上的节点。

很复杂对吗?我也这么觉得。

考虑将询问离线下来,挂到树上对应节点,然后做 树分治

设分治中心为 x x x,分类讨论:

1.1 1.1 1.1 r r r i i i x x x子树内,那么容斥掉 Lca \text{Lca} Lca不是 x x x的情况,讨论 min ⁡ \min min函数取值即可。

1.2 1.2 1.2 r r r x x x子树外, i i i x x x子树内,那么 Lca \text{Lca} Lca可以处理出来,和上一种情况是一样的。

1.3 1.3 1.3 r r r在子树内, i i i在子树外,依然考虑何时取左值,发现这是一个二维数点问题。取右值是类似的。只是这样代码量又翻倍了。。。

为什么要分子树内外讨论?因为这是颗 有根树

复杂度 O ( n log ⁡ 2 n ) O(n\log^2 n) O(nlog2n)

最后锐评一句:树上的数据结构有哪一个是好写的?(这里点名批评树剖)。

#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define pb push_back
#define db double
#define inf 0x3f3f3f3f
using namespace std;
const int N=4e5+5;
string str;
int n,Q,tot,s[N],ps[N],last;
ll res[N];
struct node{
    int nxt[26],len,link;
}t[N];
vector<pair<int,int>>querys[N];
vector<int>G[N];
int rev(int x){return n-x+1;}
void extend(int c){
    int cur=++tot,p=last;
    t[cur].len=t[last].len+1;
    while(p!=-1&&!t[p].nxt[c]){
        t[p].nxt[c]=cur;
        p=t[p].link;
    }
    if(p==-1){
        t[cur].link=0;
    }
    else{
        int q=t[p].nxt[c];
        if(t[q].len==t[p].len+1){
            t[cur].link=q;
        }
        else{
            int clone=++tot;
            t[clone].len=t[p].len+1,t[clone].link=t[q].link;
            for(int i=0;i<26;i++)t[clone].nxt[i]=t[q].nxt[i];
            t[q].link=t[cur].link=clone;
            while(p!=-1&&t[p].nxt[c]==q){
                t[p].nxt[c]=clone;
                p=t[p].link;
            }
        }
    }
    last=cur;
}
struct bit{
    ll bit[2*N];
    vector<pair<int,int>>rec;
    void add(int x,int y,int f=0){
        if(f==0)rec.pb(make_pair(x,y));
        for(;x<=2*n;x+=x&-x)bit[x]+=y;
    }
    ll qry(int x){
        if(x<0)return 0;
        ll tot=0;
        for(;x;x-=x&-x)tot+=bit[x];
        return tot;
    }
    ll query(int l,int r){
        if(l>r)return 0;
        return qry(r)-qry(l-1);
    }
    void cl(){
        for(auto x:rec)add(x.fi,-x.se,1);
        rec.clear();
    }
}bit1,bit2;
int rt,sz[N],ban[N],fa[N],num;
void dfs1(int u,int topf){
    sz[u]=1;
    for(auto v:G[u]){
        if(ban[v]||v==topf)continue;
        dfs1(v,u),sz[u]+=sz[v];
    }
}
void dfs2(int u,int topf){
    for(auto v:G[u]){
        if(ban[v]||v==topf)continue;
        dfs2(v,u);
    }
    if(rt==-1&&sz[u]>=(num+1)/2)rt=u;
}
void locate(int u){
    if(~ps[u]){
        bit1.add(ps[u],1),bit2.add(ps[u],ps[u]);
    }
    for(auto v:G[u]){
        if(ban[v]||v==fa[u])continue;
        locate(v);
    }
}
void locate2(int u,int f,int len){
    for(auto x:querys[u]){
        int l=x.fi,r=ps[u];
        res[x.se]+=bit1.query(l-1+len,r)*len*f;
        res[x.se]-=(l-1)*bit1.query(l,min(r,l+len-2))*f;
        res[x.se]+=bit2.query(l,min(r,l+len-2))*f;
    }
    for(auto v:G[u]){
        if(ban[v]||v==fa[u])continue;
        locate2(v,f,len);
    }
}
void calc(int rt,int f,int len){
    locate(rt);
    locate2(rt,f,len);
    bit1.cl(),bit2.cl();
}
void locate3(int u,int topf,int len){
    for(auto x:querys[u]){
        int l=x.fi,r=ps[u];
        res[x.se]+=bit1.query(l-1+len,r)*len;
        res[x.se]-=(l-1)*bit1.query(l,min(r,l+len-2));
        res[x.se]+=bit2.query(l,min(r,l+len-2));
    }
    for(auto v:G[u]){
        if(v==topf||ban[v]||v==fa[u])continue;
        locate3(v,u,len);
    }
}
vector<pair<pair<int,int>,int>>vec1;
vector<pair<pair<int,int>,int>>vec2;
void locate4(int u,int topf,int len){
    if(~ps[u]){
        vec1.pb(make_pair(make_pair(ps[u]+1-len,ps[u]),len));
    }
    for(auto v:G[u]){
        if(v==topf||ban[v]||v==fa[u])continue;
        locate4(v,u,len);
    }
}
void locate5(int u){
    for(auto x:querys[u]){
        int l=x.fi,r=ps[u];
        vec2.pb(make_pair(make_pair(l,r),x.se));
    }
    for(auto v:G[u]){
        if(ban[v]||v==fa[u])continue;
        locate5(v);
    }
}
void solve(int u){
    dfs1(u,-1),rt=-1,num=sz[u],dfs2(u,-1);
    calc(rt,1,t[rt].len);
    for(auto v:G[rt]){
        if(ban[v]||v==fa[rt])continue;
        calc(v,-1,t[rt].len);
    }
    locate(rt);
    for(int i=fa[rt],pre=rt;i!=-1&&!ban[i];pre=i,i=fa[i]){
        locate3(i,pre,t[i].len);
    }
    bit1.cl(),bit2.cl();
    for(int i=fa[rt],pre=rt;i!=-1&&!ban[i];pre=i,i=fa[i]){
        locate4(i,pre,t[i].len);
    }
    locate5(rt);
    sort(vec1.begin(),vec1.end());
    reverse(vec1.begin(),vec1.end());
    int now=0;
    sort(vec2.begin(),vec2.end());
    reverse(vec2.begin(),vec2.end());
    for(auto x:vec2){
        int l=x.fi.fi,r=x.fi.se;
        while(now!=vec1.size()&&rev(vec1[now].fi.fi)<=rev(l)){
            bit1.add(vec1[now].fi.se,vec1[now].se);
            now++;
        }
        res[x.se]+=bit1.query(l,r);
    }
    now=0;bit1.cl();
    reverse(vec1.begin(),vec1.end());
    reverse(vec2.begin(),vec2.end());
    for(auto x:vec2){
        int l=x.fi.fi,r=x.fi.se;
        while(now!=vec1.size()&&vec1[now].fi.fi<l){
            bit1.add(vec1[now].fi.se,1);
            bit2.add(vec1[now].fi.se,vec1[now].fi.se);
            now++;
        }
        res[x.se]-=(l-1)*bit1.query(l,r);
        res[x.se]+=bit2.query(l,r);
    }
    bit1.cl(),bit2.cl();
    vec1.clear(),vec2.clear();
    ban[rt]=1;
    for(auto v:G[rt]){
        if(!ban[v])solve(v);
    }
}
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
    cin>>str,n=str.size(),reverse(str.begin(),str.end());memset(ps,-1,sizeof ps);
    t[0].link=-1;for(int i=0;i<n;i++)extend(str[i]-'a'),s[i+1]=last,ps[last]=i+1;
    cin>>Q;
    for(int i=1;i<=Q;i++){
        int l,r;cin>>l>>r;
        l=rev(l),r=rev(r),swap(l,r);assert(l<=r);
        querys[s[r]].pb(make_pair(l,i));
    }
    fa[0]=-1;
    for(int i=1;i<=tot;i++){
        fa[i]=t[i].link;
        G[t[i].link].pb(i);
        G[i].pb(t[i].link);
    }
    solve(0);
    for(int i=1;i<=Q;i++)cout<<res[i]<<"\n";
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值