时间过的真快啊,上次看到这道题都是一个月以前了。
先数据删除一波。
将原串翻转,转化成求这个式子: ∑ i = l r min ( i − l + 1 , len [ Lca ( s i , s r ) ] ) \sum_{i=l}^r\min(i-l+1,\text{len}[\text{Lca}(s_i,s_r)]) ∑i=lrmin(i−l+1,len[Lca(si,sr)])。其中 s i s_i si表示前缀对应的后缀树上的节点。
很复杂对吗?我也这么觉得。
考虑将询问离线下来,挂到树上对应节点,然后做 树分治。
设分治中心为 x x x,分类讨论:
1.1 1.1 1.1 若 r r r和 i i i在 x x x子树内,那么容斥掉 Lca \text{Lca} Lca不是 x x x的情况,讨论 min \min min函数取值即可。
1.2 1.2 1.2 若 r r r在 x x x子树外, i i i在 x x x子树内,那么 Lca \text{Lca} Lca可以处理出来,和上一种情况是一样的。
1.3 1.3 1.3 若 r r r在子树内, i i i在子树外,依然考虑何时取左值,发现这是一个二维数点问题。取右值是类似的。只是这样代码量又翻倍了。。。
为什么要分子树内外讨论?因为这是颗 有根树。
复杂度 O ( n log 2 n ) O(n\log^2 n) O(nlog2n)。
最后锐评一句:树上的数据结构有哪一个是好写的?(这里点名批评树剖)。
#include<bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define pb push_back
#define db double
#define inf 0x3f3f3f3f
using namespace std;
const int N=4e5+5;
string str;
int n,Q,tot,s[N],ps[N],last;
ll res[N];
struct node{
int nxt[26],len,link;
}t[N];
vector<pair<int,int>>querys[N];
vector<int>G[N];
int rev(int x){return n-x+1;}
void extend(int c){
int cur=++tot,p=last;
t[cur].len=t[last].len+1;
while(p!=-1&&!t[p].nxt[c]){
t[p].nxt[c]=cur;
p=t[p].link;
}
if(p==-1){
t[cur].link=0;
}
else{
int q=t[p].nxt[c];
if(t[q].len==t[p].len+1){
t[cur].link=q;
}
else{
int clone=++tot;
t[clone].len=t[p].len+1,t[clone].link=t[q].link;
for(int i=0;i<26;i++)t[clone].nxt[i]=t[q].nxt[i];
t[q].link=t[cur].link=clone;
while(p!=-1&&t[p].nxt[c]==q){
t[p].nxt[c]=clone;
p=t[p].link;
}
}
}
last=cur;
}
struct bit{
ll bit[2*N];
vector<pair<int,int>>rec;
void add(int x,int y,int f=0){
if(f==0)rec.pb(make_pair(x,y));
for(;x<=2*n;x+=x&-x)bit[x]+=y;
}
ll qry(int x){
if(x<0)return 0;
ll tot=0;
for(;x;x-=x&-x)tot+=bit[x];
return tot;
}
ll query(int l,int r){
if(l>r)return 0;
return qry(r)-qry(l-1);
}
void cl(){
for(auto x:rec)add(x.fi,-x.se,1);
rec.clear();
}
}bit1,bit2;
int rt,sz[N],ban[N],fa[N],num;
void dfs1(int u,int topf){
sz[u]=1;
for(auto v:G[u]){
if(ban[v]||v==topf)continue;
dfs1(v,u),sz[u]+=sz[v];
}
}
void dfs2(int u,int topf){
for(auto v:G[u]){
if(ban[v]||v==topf)continue;
dfs2(v,u);
}
if(rt==-1&&sz[u]>=(num+1)/2)rt=u;
}
void locate(int u){
if(~ps[u]){
bit1.add(ps[u],1),bit2.add(ps[u],ps[u]);
}
for(auto v:G[u]){
if(ban[v]||v==fa[u])continue;
locate(v);
}
}
void locate2(int u,int f,int len){
for(auto x:querys[u]){
int l=x.fi,r=ps[u];
res[x.se]+=bit1.query(l-1+len,r)*len*f;
res[x.se]-=(l-1)*bit1.query(l,min(r,l+len-2))*f;
res[x.se]+=bit2.query(l,min(r,l+len-2))*f;
}
for(auto v:G[u]){
if(ban[v]||v==fa[u])continue;
locate2(v,f,len);
}
}
void calc(int rt,int f,int len){
locate(rt);
locate2(rt,f,len);
bit1.cl(),bit2.cl();
}
void locate3(int u,int topf,int len){
for(auto x:querys[u]){
int l=x.fi,r=ps[u];
res[x.se]+=bit1.query(l-1+len,r)*len;
res[x.se]-=(l-1)*bit1.query(l,min(r,l+len-2));
res[x.se]+=bit2.query(l,min(r,l+len-2));
}
for(auto v:G[u]){
if(v==topf||ban[v]||v==fa[u])continue;
locate3(v,u,len);
}
}
vector<pair<pair<int,int>,int>>vec1;
vector<pair<pair<int,int>,int>>vec2;
void locate4(int u,int topf,int len){
if(~ps[u]){
vec1.pb(make_pair(make_pair(ps[u]+1-len,ps[u]),len));
}
for(auto v:G[u]){
if(v==topf||ban[v]||v==fa[u])continue;
locate4(v,u,len);
}
}
void locate5(int u){
for(auto x:querys[u]){
int l=x.fi,r=ps[u];
vec2.pb(make_pair(make_pair(l,r),x.se));
}
for(auto v:G[u]){
if(ban[v]||v==fa[u])continue;
locate5(v);
}
}
void solve(int u){
dfs1(u,-1),rt=-1,num=sz[u],dfs2(u,-1);
calc(rt,1,t[rt].len);
for(auto v:G[rt]){
if(ban[v]||v==fa[rt])continue;
calc(v,-1,t[rt].len);
}
locate(rt);
for(int i=fa[rt],pre=rt;i!=-1&&!ban[i];pre=i,i=fa[i]){
locate3(i,pre,t[i].len);
}
bit1.cl(),bit2.cl();
for(int i=fa[rt],pre=rt;i!=-1&&!ban[i];pre=i,i=fa[i]){
locate4(i,pre,t[i].len);
}
locate5(rt);
sort(vec1.begin(),vec1.end());
reverse(vec1.begin(),vec1.end());
int now=0;
sort(vec2.begin(),vec2.end());
reverse(vec2.begin(),vec2.end());
for(auto x:vec2){
int l=x.fi.fi,r=x.fi.se;
while(now!=vec1.size()&&rev(vec1[now].fi.fi)<=rev(l)){
bit1.add(vec1[now].fi.se,vec1[now].se);
now++;
}
res[x.se]+=bit1.query(l,r);
}
now=0;bit1.cl();
reverse(vec1.begin(),vec1.end());
reverse(vec2.begin(),vec2.end());
for(auto x:vec2){
int l=x.fi.fi,r=x.fi.se;
while(now!=vec1.size()&&vec1[now].fi.fi<l){
bit1.add(vec1[now].fi.se,1);
bit2.add(vec1[now].fi.se,vec1[now].fi.se);
now++;
}
res[x.se]-=(l-1)*bit1.query(l,r);
res[x.se]+=bit2.query(l,r);
}
bit1.cl(),bit2.cl();
vec1.clear(),vec2.clear();
ban[rt]=1;
for(auto v:G[rt]){
if(!ban[v])solve(v);
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin>>str,n=str.size(),reverse(str.begin(),str.end());memset(ps,-1,sizeof ps);
t[0].link=-1;for(int i=0;i<n;i++)extend(str[i]-'a'),s[i+1]=last,ps[last]=i+1;
cin>>Q;
for(int i=1;i<=Q;i++){
int l,r;cin>>l>>r;
l=rev(l),r=rev(r),swap(l,r);assert(l<=r);
querys[s[r]].pb(make_pair(l,i));
}
fa[0]=-1;
for(int i=1;i<=tot;i++){
fa[i]=t[i].link;
G[t[i].link].pb(i);
G[i].pb(t[i].link);
}
solve(0);
for(int i=1;i<=Q;i++)cout<<res[i]<<"\n";
}