1.高斯滤波算法的实现
前面讲的均值/中值滤波,对于滤波窗口内每个像素的权重都是一样的。但是噪声在图像当中常表现为异常视觉效果的孤立像素点或像素块,那么他必然不是平均分布。
这里先引入一个概念:正态分布:
正态分布是最重要的一种概率分布,相关概念是由德国的数学家和天文学家Moivre在1733年提出的,但由于德国数学家Gauss率先将其用于天文学研究,因此也叫做高斯分布。在正态分布里,认为中间状态是常态,过高和过低都属于少数,因此正态分布具有相当的普遍性,典型的比如我们的身高、寿命、血压、成绩、测量误差等都遵从正太分布。
以中国家庭动态跟踪,抽样掉找自报的身高数据为例,如下是2010年男/女身高分布直方图,近似呈现正态分布。
弗朗西斯·高尔顿爵士(1822-1911),查尔斯·达尔文的表弟,曾发明了一个叫做高尔顿钉板的装置,展示了正态分布的产生过程。装置上方倒入弹珠,最终撞到钉子后随机选择往左还是往右,结果如下:呈正态分布。
当然,自然界也有不呈姿态分布的例外,比如财富分布,最初可能是正态分布的,但是优质的资源总是掌握在少数人手里,而穷人对信息和机会更匮乏,结果导致富者越富,贫者越贫,这就是所谓的“马太效应(两极分化)”,如下图所示。
扯远了,回归正题,我们这里主题就是要处理高斯分布的噪声,与椒盐噪声不同,高斯噪声则是画面上每个点都存在着不同程度的,与当前像素距离成高斯分布的噪声。这里我们继续在前文已经成熟的3*3滑窗方案上,进行高斯算法的