一文读懂图像三原色原理

本文介绍了图像的成像原理,重点讨论RGB三原色模型。RGB由红、绿、蓝三种颜色构成,每种颜色有256个细分深度,可以混合出1677万种颜色。在计算机中,RGB888模型广泛用于表示真彩图像,而RGB565模型在带宽和成本有限的情况下使用。此外,文章还提到了YUV颜色空间和四原色技术(CMYK和RGBY),并指出人眼的三色视觉系统如何感知颜色。
摘要由CSDN通过智能技术生成

本书后面的篇幅将重点讲基于Matlab与FPGA的数字图像处理。但在正式开始之前,我们不得不再得巴拉巴拉一下,图像的成像原理。知其然要知其所以然,了解图像的成像原理,对于图像数据的组成,算法的处理以及显示成像等,均有帮助。


从牙牙学语起,我们开始认知世界的五彩斑斓,或是草丛的绿油,或是晚霞的红火,或是麦穗的金黄,或是大海的蓝色,亦或是惊艳的彩虹。我们无比迷恋那缤纷的花海,甘愿倾城沉醉那花香,这是来自大自然的馈赠,也是我们对色彩不懈追求与陶冶。

颜色通常由三个独立的分量来描述,相互综合得到最终的结果,这个三个变量变构成了一个XYZ空间坐标系,这就是颜色空间,而不同的颜色空间只是从不同的角度去衡量而已。颜色空间可以分成基本的两大类:三原色颜色空间,即RGB;色度/亮度颜色空间,即YUV/HSV(这里HSV不作为重点解释)。

计算机处理色彩为了匹配显示器,采用了RGB三原色,同时每种颜色有256个细分深度,因此三种颜色的分量混合叠加出224种颜色。红蓝绿三色能够混合出其他颜

Yolov5 是一种广泛应用于目标检测的算法,其 loss 原理相对简单。Yolov5 通过将目标检测问题转化为一个回归问题,通过预测 bounding box 的坐标来实现目标检测。 Yolov5 的 loss 主要包括三个部分:分类损失、定位损失和目标置信度损失。 分类损失是用来衡量预测的类别与真实类别之间的差异。Yolov5 使用交叉熵损失函数来计算分类损失。对于每个边界框(bounding box),它将计算预测类别的 softmax 概率与真实类别的 one-hot 向量之间的交叉熵。 定位损失用于衡量预测的边界框位置与真实边界框位置之间的差异。Yolov5 使用 Smooth L1 损失函数来计算定位损失。它通过对预测边界框的坐标与真实边界框的坐标之间进行平滑处理,减小了异常值的影响。 目标置信度损失用于衡量预测的边界框与真实边界框之间的 IoU(Intersection over Union)之间的差异。Yolov5 使用 Binary Cross-Entropy 损失函数来计算目标置信度损失。它将预测的边界框是否包含目标与真实边界框是否包含目标之间的差异进行衡量。 最终,Yolov5 的总损失是通过将三个部分的损失加权求和得到的。这些权重可以根据具体的任务和数据集进行调整。 通过最小化 Yolov5 的 loss 函数,模型可以学习到更准确的目标检测结果。这样,我们就可以在图像中准确地检测和定位不同类别的目标。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Im_CrazyBingo

我就玩玩

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值