avl树自实现(带图),探讨平衡因子与旋转

引子:

在此之前,我们学过了搜索二叉树,这种树,在如果数据有序或接近有序的情况下,二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下,而且普通搜索二叉树无法有重复的元素,对此,我们提出了平衡二叉树,avl树就是比较基础的,一种基于搜索二叉树的改进树,引入了平衡因子与旋转的概念!avl树是由两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种方法。

什么是avl树?

AVL树是一种自平衡的二叉搜索树,它的名字来源于它的发明者Adelson-Velsky和Landis。AVL树的特点是任何节点的两个子树的高度(或深度)最大差异为1。这种平衡特性确保了树的查找、插入和删除操作都能在对数时间内完成,即时间复杂度为O(log n)。当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

1,它的左右子树都是AVL树 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

2,如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log_2n),搜索时间复杂度O(log_2n)。

avl树的实现

如何实现avl树呢,我们要从图入手,并一步一步实现avl树代码的实现!

我们可以先换一侧树的全部情况,先写出“一半代码”,然后仿照着写就可以了。

一,先试着画出一半的图,思考如何写?以下是一个示范图

图一:

图二:

图三:

二,导入库

#include<iostream>
#include<assert.h>
using namespace std;

三,创建节点

//创建节点
template<class K,class V>
class avlTreeNode
{
public:
	avlTreeNode* _left;//左节点
	avlTreeNode* _right;//右节点
	avlTreeNode* _parent;//上级节点
	int _bf;//平衡因子
	pair<K, V>_kv;//kv的值;

	avlTreeNode(const pair<K,V>&kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
};

四,整体框架;

template<class K,class V>
class avlTree
{
	typedef avlTreeNode<K,V> Node;
public:
	//构造函数
	avlTree() = default;
	//拷贝构造函数,树形节点要一个一个拷贝
	avlTree(const avlTree<K, V>& h)
	{
		_root = copy(h._root);
	}

	//find K值
	Node* Find( const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_left->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_left->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	//find V值
	Node* Find(const V& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_left->_kv.second < key)
			{
				cur = cur->_right;
			}
			else if (cur->_left->_kv.second > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

	//中序有序,避免了_root是内部private的加密
	void _InOrder()
	{
		_InOrder(_root);

		cout << endl;
	}

	//insert
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		//要先找到,插入位置
		Node* parent = nullptr;
		Node* current = _root;
		while (current)
		{
			if (current->_kv.first < kv.first)
			{
				parent = current;
				current = current->_right;
			}
			else if (current->_kv.first > kv.first)
			{
				parent = current;
				current = current->_left;
			}
			else
			{
				return false;
			}
		}
		//新增节点再链接上去
		current = new Node(kv);
		if (kv.first > (parent->_kv.first))
		{
			parent->_right = current;
		}
		else if (kv.first < (parent->_kv.first))
		{
			parent->_left = current;
		}
		return true;
		current->_parent = parent;

		//更新平衡因子,新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
		//破坏了AVL树
		while (current)
		{
			//左插--,右插++
			if (current == parent->_left)
			{
				parent->_bf--;
			}
			else if (current == parent->_right)
			{
				parent->_bf++;
			}
			
			if (parent->_bf == 0)
			{
				//高度不变,达到最理想状态
				break;
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				//向上更新
				current = parent;
				parent = parent->_parent;
			}
			else if(parent->_bf == 2 || parent->_bf == -2)//不平衡情况
			{
				if (parent->_bf == 2 && current->_bf == 1)//左旋
					RotateL(parent);
				else if (parent->_bf == -2 && current->_bf == -1)//右旋
					RotateR(parent);
				else if (parent->_bf == 2 && current->_bf ==-1)//左右旋
					RotateRL(parent);
				else  //(parent->_bf == -2 && current->_bf == 1)
					RotateLR(parent);
			}
			else
				assert(false);
		}
		return true;
	}

	//因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不
	//错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。




	//重载=
	avlTree<K, V>& operator=(const avlTree<K, V>& h)
	{
		swap(_root, h._root);
		return *this;
	}
	//析构函数,注意开辟了空间后,对于树形结构的节点要一个一个删除
	~avlTree()
	{
		Destory(_root);
		_root = nullptr;
	}
	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

五,private部分

private:
	//计算有效的节点
	int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}

	//计算树的高度,利用递归
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

	//对它进行检验

	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root) 
			return true;
		//严格检验

		int TreeHeight_L = _Height(root->_left);
		int TreeHeight_R = _Height(root->_right);
		//我们默认的是右到左
		int diff = TreeHeight_R - TreeHeight_L;

		//高度与平衡因子的数值不匹配
		if (diff != root->_bf || (diff > 1 || diff < -1))
			return false;

		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}

	//中序遍历
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		//左根右;
		_InOrder(root->_left);
		cout << root->_kv.first << " :" << root->_kv.second << " ";
		_InOrder(root->_right);
	}

	void RotateL( Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		parent->_parent = subR;

		Node* parent_parent = parent->_parent;
		if (parent_parent == nullptr)
		{
			_root = subR;
			parent_parent = nullptr;
		}
		else
		{
			if (parent_parent->_left == parent)
			{
				parent_parent->_left = subR;
			}
			else if (parent_parent->_right == parent)
			{
				parent_parent->_right = subR;
			}
			subR->_parent = parent_parent;
		}
		subR->_bf = parent->_bf = 0;
	}

	void RotateR( Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		parent->_parent = subL;

		Node* parent_parent = parent->_parent;
		if (parent_parent == nullptr)
		{
			_root = subL;
			parent_parent = nullptr;
		}
		else
		{
			if (parent_parent->_left == parent)
			{
				parent_parent->_left = subL;
			}
			else if (parent_parent->_right == parent)
			{
				parent_parent->_right = subL;
			}
			subL->_parent = parent_parent;
		}
		subL->_bf = parent->_bf = 0;
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);
		
		if (bf == 0)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == 0)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subL->_bf = -1;
			subLR->_bf = 0;
			parent->_bf =0;
		}
		else if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else
		{
			assert(false);
		}
	}

    //销毁
	void Destory(Node* root)
	{
		if (root==nullptr)
		{
			return;
		}
		Destory(root->_left);
		Destory(root->_right);
		Destory(root->_parent);
		delete root;
	}

	//拷贝
	Node* copy(const Node*& root)
	{
		if (root == nullptr)
		{
			return nullptr;
		}
		Node* temp = new Node(root->_kv);
		temp->_left=copy(root->_left);
		temp->_right=copy(root->_right);
		temp->_parent=copy(root->_parent);
		return temp;
	}

	Node* _root = nullptr;
};

六:说明,对于erase部分先不做处理啦!

七,AVL树的性能 AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即log_2 (N)。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


ok,感谢大家的观看,有
问题可以发评论区(微笑!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值