斐波那契的整除 | ||
| ||
description | ||
已知斐波那契数列有如下递归定义,f(1)=1,f(2)=1, 且n>=3,f(n)=f(n-1)+f(n-2),它的前几项可以表示为1, 1,2 ,3 ,5 ,8,13,21,34…,现在的问题是想知道f(n)的值是否能被3和4整除,你知道吗?
| ||
input | ||
输入数据有若干组,每组数据包含一个整数n(1< n <1000000000)。
| ||
output | ||
对应每组数据n,若 f(n)能被3整除,则输出“3”; 若f(n) 能被4整除,则输出“4”;如果能被12整除,输出“YES”;否则输出“NO”。
| ||
sample_input | ||
4
6
7
12
| ||
sample_output | ||
3
4
NO
YES
| ||
hint | ||
|
如果直接计算会溢出。所以是一道规律题目。如果fn能被3整除,当且仅当n可以被4整除;如果fn能被4整除,当且仅当n可以被6整除;如果fn能够被12整除,当且仅当n可以被12整除。
#include<stdio.h>
int n;
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n%12==0)
printf("YES\n");
else
{
if(n%4==0)
printf("3\n");
else
if(n%6==0)
printf("4\n");
else
printf("NO\n");
}
}
return 0;
}