Elo ranking,一种经典的排名算法,最初用于评估棋类比赛中选手的水平。现在,它也被广泛应用于各种竞技场景,包括电子竞技、体育比赛以及在线游戏。通过理解Elo ranking,你可以更好地评估测试用例的优先级和价值。Elo ranking旨在根据参与者之间的胜负结果来确定他们的相对能力水平。简而言之,它是一种评估竞争者技能的方法,其数值代表了参与者的相对强度。
方法
Elo ranking基于以下两个基本原则:
- 预期胜率: 在两个参与者之间的比赛中,根据其当前的Elo分数,可以计算出每个参与者获胜的预期概率。
- 分数调整: 比赛结束后,参与者的分数将根据实际结果进行调整。赢得比赛的一方会获得分数增加,而输掉比赛的一方则会失去分数。
Elo ranking的原始算法由物理学家阿兰·埃洛(Arpad Elo)于1960年提出。其核心思想是根据实际结果与预期结果之间的偏差来调整参与者的分数。具体而言,胜者的分数增加量取决于他们的预期胜率以及实际胜率之间的差异
思路
实现Elo ranking算法通常包括以下步骤:
- 初始化分数: 给参与者一个初始的Elo分数,通常是相同的值。
- 计算预期胜率: 根据参与者之间的Elo分数差异,计算出每个参与者获胜的预期概率。
- 比赛结果反馈: 根据实际比赛结果,更新参与者的Elo分数。赢得比赛的一方分数增加,输掉比赛的一方分数减少,增减的大小取决于预期胜率和实际结果之间的偏差。
- 重复迭代: 随着更多比赛的进行,持续更新参与者的Elo分数,以反映其最新的竞技水平。
实现
要实现Elo ranking,首先需要确定初始的排名分数,通常为一个中间值(如1500)。然后,根据比赛结果的预测概率和实际结果,使用以下公式更新参与者的排名分数:
R’=R+K×(S−E)
- R ′是更新后的排名分数,
- R 是原始的排名分数,
- K 是一个称为“K因子”的参数,用于调整排名的变化速度,
- S 是实际比赛结果(1表示胜利,0表示失败),
那么预测的胜率E就可以用如下公式表示:
其中,
𝑅𝑎、 Rb分别是两个参与者的排名分数。
通过理解Elo ranking,可以更好地评估测试结果的可信度