A、B 两个待比较、评价的对象,分别打分为 RA,RB ,则各自获胜的期望值为:
⎧⎩⎨⎪⎪⎪⎪⎪⎪EA=11+10(RB−RA)/400.EB=11+10(RA−RB)/400.
不妨令 QA=10RA/400,QB=10RB/400 ,则有:
⎧⎩⎨⎪⎪⎪⎪⎪⎪EA=QAQA+QB.EB=QBQA+QB.
1. 基本推论
- EA+EB=1
- EAEB=QAQB
2. K-factor
R′A=RA+K(SA−EA)
- EA 某次比赛的期望得分;
- SA 该次比赛的实际得分;
-
K
K=16 对于专业运动员(单次比赛影响较小);- K=32 对于初级运动员;
3. 举例
某运动员当前评分为 1613,其参加了一个 5 轮的锦标赛,结果分别如下:
- 输给了一个评分为 1609 分的运动员;
- 11+10(1609−1613)/400≈ 0.51
- 赢了一个评分 1477 分的运动员;
- 11+10(1477−1613)/400≈ 0.69
- 赢了一个评分为 1388 分的运动员;
- 11+10(1388−1613)/400≈ 0.79
- 赢了一个评分为 1586 分的运动员;
- 11+10(1586−1613)/400≈ 0.54
- 输给了一个评分为 1720 分的运动员 ;
- 11+10(1720−1613)/400≈ 0.35
则运动员的真实得分为: S=0+0.5+1+1+0=2.5
运动员的期望得分为: E=0.51+0.69+0.79+0.54+0.35=2.88此时运动员的打分为:
1613+32(2.5−2.88)=1601