【学习记录】WBF--加权框融合,优化目标检测的SOTA

WBF–加权框融合,已经成为优化目标检测的SOTA了。
如果你熟悉目标检测的工作原理,你可能知道总有一个主干CNN来提取特征。还有一个阶段是,生成区域建议(region proposal)–可能的建议框,或者是过滤已经提出的建议区域。这里的主要问题是,要么物体检测任务出现一物多框,要么生成的边框不够,最终导致平均精度较低的原因。目前其实已经提出了一些算法来解决这个问题。

1.比如我们常见的NMS–非极大抑制。但是其实,对于遮挡问题较为严重的检测任务,在一些目标密集的区域,可能包含多个标签,这意味着将出现一框多物的现象,如果使用非极大抑制NMS这类策略,它是通过iou来过滤框的,因此,很难确定一个较好的阈值,所以这类策略可能会删除有用的检测框。

2.另外还有soft-NMS,它试图通过一种更soft的方法来解决NMS的主要问题。它不会完全移除那些iou高于阈值的框,而是根据iou的值来降低它们的置信度分数。它是NMS的优化,相比于NMS会过滤掉过更少的框。

3.加权框融合(WBF)的工作原理与NMS不同。首先,它将所有的边界框按照置信度分数的递减顺序进行排序,然后生成一个可能的框来融合列表,并检查这些融合是否与原始框匹配。这里也会给定一个iou的阈值来判断匹配效果,它通过检查iou是否大于指定阈值来实现。

然后,通过一系列公式来调整坐标和框列表中所有框的置信度分数。新的置信度仅仅是它被融合的所有框的平均置信度。新坐标以类似的方式融合(平均),除了坐标是加权的,既然是加权的,意味着不是每个框在最终的融合的框中都具有相同的贡献。这个权重的值是由置信度来决定的,但较低的置信度可能表明预测错误。

4.除此之外,还有第四种方法,非最大加权融合,它的工作机制和WBF类似,但性能不如WBF,因为它不会改变框的置信度,而是使用iou值来衡量方框,而不是更精确的度量。其实表现也相当接近。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值