【论文笔记】RSE//结合遥感数据和气象数据改进关中平原小麦产量估算的LSTM神经网络

1.材料与方法

计算植被温度条件指数(VTCI)和叶面积指数(LAI)两个遥感指标;
主要采用:1km空间分辨率的LST产品、1km空间分辨率的表面反射率数据产品、空间分辨率为500m的4天MODIS LAI数据
气象数据与小麦产量数据:
主要采用:中国气象局测量的关中平原各县的日降水量和温度数据、陕西省农村年鉴中记录的关中平原各县2007-2017年冬小麦产量数据。
研究方法:LSTM、BP和支持向量机。

2.LSTM深度神经网络模型

作者建立了一个用于小麦产量估算的5层深层神经网络模型,如图3所示,该模型包括一个输入层、两个LSTM层、一个致密层和一个输出层。输入是一个时间序列,包括冬小麦四个生长阶段的VTCI和LAI、主生长阶段的平均降水量和平均温度。整个网络的输入用n个样本、n个时间步长和n个特征表示。模型的输出是估计的小麦产量。

3.两种输入组合:

植被指数/植被指数+气象数据

4.3种时间步长设置

可以发现哪种组合和时间步长方案表现最好,并回答研究问题。基于这两组试验,可以得到估算小麦产量的最佳LSTM模型性能。

5.结果与讨论:

1.对比了不同时间步长和输入组合下的产量估计,结果表明,遥感数据(VTCI和LAI)和气象数据(平均降水量和平均温度)的结合可以捕捉到对作物生长和粮食形成过程更广泛的影响,这提供了超出遥感数据为产量估算提供的额外和独特的信息。将气象数据添加到LSTM模型中可以提高估计性能,与县尺度结果一致,这表明气象数据提供了独特的附加信息。
2.与传统机器学习方法的性能比较
3.不同采样点下模型稳健性的验证

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值