图像直方图均衡化次数不同,结果相同简要说明

背景介绍

如果一幅图像灰度级分布不均、很密,集中在某个区域,那么其对比度就较差,显示效果不好。直方图均衡化就是把图像灰度级进行平均展宽,使其尽可能均匀分布,从而进而提高了对比度和灰度色调的变化,使图像更加清晰,显示效果更好。

理论证明

设图像灰度级为L,直方图均衡化理论公式:

sk=T(rk)=j=0kPr(rj)

式中Pr(rj)表示原始灰度值rj对应出现的概率,Ps(rj)表示直方图均衡化后灰度值rj对应出现的概率,k=0,1,2,3,,L1。通过gray=sk(G1)可得到均衡化对应的灰度值,概率大小不变。 直方图均衡化均衡结果只与灰度值出现的概率小大有关,而与灰度值的大小无关。

根据均衡化变换函数一个重要性质:单值且单调递增[1]。即说明经过灰度变换后,相对大小不变,较大的灰度仍对应较大的灰度,其概率也不发生任何变化。在此将k[0,L1]Pr(rk)=Ps(rk)=0中出现概率为0的灰度值k去掉(因为其在图像上不显示相应灰度),剩余M个灰度值,灰度序列记为W。因为灰度相对大小不变和对应非零概率大小也不变,因此灰度均衡化前后得到新的灰度序列W相同。即有公式

j=0kPr(rj)=j=0kPs(rj)k=0,1,2,3,,M1
成立。所以第二次直方图均衡化之后的变换函数跟第一次直方图均衡化一样,直方图均衡化结果也相同。

实验论证

对图像pout.tif分别进行一次和连续两次直方图均衡化,比较两个均衡后的灰度直方图,代码如下:

function [ output_args ] = image_junheng( input_args )
%%无输入输出参数
I=imread('pout.tif');
subplot(3,2,1),imshow(I),title('原始图像'),hold on;
subplot(3,2,2),imhist(I),title('原始图像直方图'),hold on;
I1=histeq(I);
subplot(3,2,3),imshow(I1),title('一次均衡化'),hold on;
subplot(3,2,4),imhist(I1),title('一次均衡化直方图'),hold on;
I2=histeq(I1);
subplot(3,2,5),imshow(I2),title('二次均衡化'),hold on;
subplot(3,2,6),imhist(I2),title('二次均衡化直方图'),hold on;
end

实验结果如下图:
这里写图片描述
从上图可以看出经过直方图均衡化的图像对比度更加高,显示效果更好,同时经过一次直方图均衡化和两次的结果和对应的灰度直方图几乎一样(那一点点差别因为离散化计算近似取值造成)。进而可以得出图像直方图均衡化次数不同,结果相同。

[1]Gonzalez R C, Woods R E, 数字图像处理. 阮秋琦, 译[J]. 数字图像处理, 第二版, 北京电子工业出版社, 北京, 2003:72-73

发布了24 篇原创文章 · 获赞 16 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览