目录
(一)灾难性遗忘(Catastrophic Forgetting)
(二)数据分布偏移(Data Distribution Shift)
摘要 :在数据量呈爆炸式增长且信息更新换代日益加速的当今时代,增量学习作为一种前沿机器学习范式,凭借其独特的动态更新优势,为模型的持续优化和业务的实时智能决策提供了强有力的技术支撑。本文深入剖析增量学习的核心概念,详细解读其与传统学习方法的本质区别;系统地通过精心设计的代码示例,全面展示从数据处理、模型搭建到增量学习实施的完整流程;广泛探讨增量学习在多个关键领域的创新应用场景;全面分析在实践过程中需重点关注的灾难性遗忘、数据偏移等挑战及应对策略。文章力求以深入浅出的方式,为读者呈现增量学习的全貌,助力读者快速掌握并灵活运用这一技术,推动智能应用的持续创新与发展。