函数、极限、连续

函数方面题型:暂无







极限方向题型:

题型四:无穷小量阶的比较

方向1:是x的n阶无穷小,求n

例1:已知当 x → 0 x \rightarrow 0 x0时, f ( x ) = ln ⁡ 1 + x 1 − x − 2 ln ⁡ ( x + 1 + x 2 ) f(x)=\ln \frac{1+x}{1-x}-2 \ln \left(x+\sqrt{1+x^{2}}\right) f(x)=ln1x1+x2ln(x+1+x2 )是x的n阶无穷小,则n=?

A.1     B.2     C.3     D.4

分析&思路:
f ( x ) = ln ⁡ 1 + x 1 − x − 2 ln ⁡ ( x + 1 + x 2 ) f(x)=\ln \frac{1+x}{1-x}-2 \ln \left(x+\sqrt{1+x^{2}}\right) f(x)=ln1x1+x2ln(x+1+x2 )

  • 有两种解题思路
  • 第一种:直接算,求出n
  • 第二种:排除法判断
  • fx是奇函数,奇函数的泰勒展开是不能有偶函数的,所以选项中的偶次想统统不行
  • 然后剩下13,分别带进去看看,先认定它积分存在,直接拆开算积分,谁要是不存在,直接排除

开始解题:
方法一:直接算n
lim ⁡ x → 0 f ( x ) x n = lim ⁡ x → 0 ln ⁡ ( 1 + x ) − ln ⁡ ( 1 − x ) − 2 ln ⁡ ( x + 1 + x 2 ) x n \lim _{x \rightarrow 0} \frac{f(x)}{x^{n}}=\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln (1-x)-2 \ln \left(x+\sqrt{1+x^2}\right)}{x^{n}} limx0xnf(x)=limx0xnln(1+x)ln(1x)2ln(x+1+x2 )


= lim ⁡ x → 0 [ x − 1 2 x 2 + 1 3 x 3 + 0 ( x 3 ) ] − [ − x − 1 2 x 2 − 1 3 x 3 + 0 ( x 3 ) ] − 2 ln ⁡ ( x + 1 + x 2 ) x n =\lim _{x \rightarrow 0} \frac{\left[x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+0\left(x^{3}\right)\right]-\left[-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+0\left(x^{3}\right)\right]-2 \ln \left(x+\sqrt{1+x^{2}}\right)}{x^{n}} =limx0xn[x21x2+31x3+0(x3)][x21x231x3+0(x3)]2ln(x+1+x2 )


= lim ⁡ x → 0 2 x + 2 3 x 3 − 2 ln ⁡ ( x + 1 + x 2 ) x n =\lim _{x \rightarrow 0} \frac{2 x+\frac{2}{3} x^{3}-2 \ln\left(x+\sqrt{1+x^{2}}\right)}{x^{n}} =limx0xn2x+32x32ln(x+1+x2 )


这里 2 ln ⁡ ( x + 1 + x 2 ) 2 \ln \left(x+\sqrt{1+x^{2}}\right) 2ln(x+1+x2 )直接泰勒有点顶


我们对它求导 [ ln ⁡ ( x + 1 + x 2 ) ] ′ = 1 1 + x 2 \left[\ln \left(x+\sqrt{1+x^{2}}\right)\right]^{\prime}=\frac{1}{\sqrt{1+x^{2}}} [ln(x+1+x2 )]=1+x2 1


然后再泰勒展开它的导数 1 1 + x 2 = 1 − x 2 2 + o ( x 2 ) \frac{1}{\sqrt{1+x^{2}}}=1-\frac{x^{2}}{2}+o\left(x^{2}\right) 1+x2 1=12x2+o(x2)


然后再把泰勒展开求积分 ∫ 1 − x 2 2 d x = x − x 3 6 \int 1-\frac{x^{2}}{2} d x=x-\frac{x^{3}}{6} 12x2dx=x6x3带入 lim ⁡ x → 0 f ( x ) x n \lim _{x \rightarrow 0} \frac{f(x)}{x^{n}} limx0xnf(x)


= lim ⁡ p → 0 2 x + 2 3 x 3 − 2 ( x − x 3 6 ) x n = A =\lim _{p \rightarrow 0} \frac{2 x+\frac{2}{3} x^{3}-2\left(x-\frac{x^{3}}{6}\right)}{x^{n}}=A =limp0xn2x+32x32(x6x3)=A


= lim ⁡ x → 0 1 3 x 3 x n = A =\lim _{x \rightarrow 0} \frac{\frac{1}{3} x^{3}}{x^{n}}=A =limx0xn31x3=A
所以可以知道n=3了

方法二:排除法
首先判断函数是奇函数
f ( − x ) = ln ⁡ 1 − π 1 + x − 2 ln ⁡ ( 1 + x 2 − x ) f(-x)=\ln \frac{1-\pi}{1+x}-2 \ln \left(\sqrt{1+x^{2}}-x\right) f(x)=ln1+x1π2ln(1+x2 x)
= − ln ⁡ 1 + x 1 − x + 2 ln ⁡ [ x + 1 + x 2 ( 1 + x 2 − x ) ( 1 + x 2 + x ) ] =-\ln \frac{1+x}{1-x}+2 \ln \left[\frac{x+\sqrt{1+x^{2}}}{\left(\sqrt{1+x^{2}-x}\right)\left(\sqrt{1+x^{2}}+x\right)}\right] =ln1x1+x+2ln[(1+x2x )(1+x2 +x)x+1+x2 ]
= − [ ln ⁡ 1 + π 1 − π − 2 ln ⁡ ( x + 1 + x 2 ) ] =-\left[\ln \frac{1+\pi}{1-\pi}-2 \ln \left(x+\sqrt{1+x^{2}}\right)\right] =[ln1π1+π2ln(x+1+x2 )]
= − f ( x ) =-f(x) =f(x)
根据奇函数的性质,泰勒展开不可能有偶次项,所以24排除
将1带入检测
lim ⁡ x → 0 f ( x ) x = lim ⁡ x → 0 ln ⁡ ( 1 + x 1 − x ) − 2 ln ⁡ ( x + 1 + x 2 ) x \lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{\ln \left(\frac{1+x}{1-x}\right)-2 \ln \left(x+\sqrt{1+ x^{2}}\right)}{x} limx0xf(x)=limx0xln(1x1+x)2ln(x+1+x2 )
= lim ⁡ x → 0 [ ln ⁡ ( 1 + π ) x − ln ⁡ ( 1 − x ) x − 2 ln ⁡ ( x + 1 + x 2 ) x ] =\lim _{x \rightarrow 0}\left[\frac{\ln (1+\pi)}{x}-\frac{\ln (1-x)}{x}-2 \frac{\ln \left(x+\sqrt{1+x^{2}}\right)}{x}\right] =limx0[xln(1+π)xln(1x)2xln(x+1+x2 )]
= lim ⁡ x → 0 [ 1 + 1 − 2 ] =\lim _{x \rightarrow 0}[1+1-2] =limx0[1+12]
= 0 =0 =0
很显然算出来极限等于0,极限不一定存在.
所以剩下3是对的选c

连续方面题型:

题型一:讨论连续性及间断点类型

方向1:函数等于一个极限

例1:求函数 f ( x ) = lim ⁡ n → ∞ x n + 2 − x − n x n + x − n f(x)=\lim _{n \rightarrow \infty} \frac{x^{n+2}-x^{-n}}{x^{n}+x^{-n}} f(x)=limnxn+xnxn+2xn的间断点并指出其类型.

分析&思路:
f ( x ) = lim ⁡ n → ∞ x n + 2 − x − n x n + x − n f(x)=\lim _{n \rightarrow \infty} \frac{x^{n+2}-x^{-n}}{x^{n}+x^{-n}} f(x)=nlimxn+xnxn+2xn

  • 函数=一个极限
  • 右边的极限根据不同x取值,分别可以等于不同的值或者x的形式
  • 求出右边的极限后,应该可以获得一个分段函数,再求间断点的类型.
  • 先找到可能的间断点 如x=0
  • 研究等号右边的极限: lim ⁡ n → ∞ \lim _{n \rightarrow \infty} limn 研究的是n不是x,x在极限里面是一个常数,要注意区分。
    很显然 n → ∞ n \rightarrow \infty n要研究指数函数(为什么不研究幂函数,麻烦看楼上加粗字体),x作为底数,分为 ∣ x ∣ > 1 |x|>1 x>1 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1两种情况

开始解题:
因为还要带一个 x − n x^{-n} xn参与运算,很**麻烦,所以上下同乘 x n x^{n} xn
lim ⁡ n → ∞ x 2 n + 2 − 1 x 2 n + 1 \lim _{n \rightarrow \infty} \frac{x^{2 n+2}-1}{x^{2 n}+1} nlimx2n+1x2n+21
1.当 ∣ x ∣ > 1 |x|>1 x>1时, x n x^{n} xn x 2 n + 2 x^{2 n+2} x2n+2 → ∞ \rightarrow \infty ,看坐标轴啊西巴
我不想描述啊
所以当 ∣ x ∣ > 1 |x|>1 x>1时, f ( x ) = lim ⁡ n → ∞ x 2 n + 2 − 1 x 2 n + 1 = x 2 f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n+2}-1}{x^{2 n}+1}=x^{2} f(x)=limnx2n+1x2n+21=x2


2.当 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1时, f ( x ) = lim ⁡ n → ∞ x 2 n + 2 − 1 x 2 n + 1 = lim ⁡ n → ∞ − 1 1 = − 1 f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n+2}-1}{x^{2 n}+1}=\lim _{n \rightarrow \infty} \frac{-1}{1}=-1 f(x)=limnx2n+1x2n+21=limn11=1


3.当 x = 1 x=1 x=1时, f ( x ) = lim ⁡ x → ∞ x 2 n + 2 − 1 x 2 n + 1 = 1 − 1 2 = 0 f(x)=\lim _{x \rightarrow \infty} \frac{x^{2 n+2}-1}{x^{2 n}+1}=\frac{1-1}{2}=0 f(x)=limxx2n+1x2n+21=211=0


最后得到   f ( x ) = { x 2 , ∣ x ∣ > 1 0 , x = 1 − 1 , 0 < ∣ x ∣ < 1 \ f(x)=\left\{\begin{array}{cl}x^{2} & ,|x|>1 \\ 0 & , x=1 \\ -1, & 0<|x|<1\end{array}\right.  f(x)=x201,,x>1,x=10<x<1


疑点有这三个 x = ± 1 , x = 0 x=\pm 1, \quad x=0 x=±1,x=0


现在求极限


lim ⁡ x → 0 f ( x ) = − 1 \lim _{x \rightarrow 0} f(x)=-1 limx0f(x)=1
可以看出0是可去间断点


{ lim ⁡ x → 1 + f ( x ) = 1 2 = 1 lim ⁡ x → 1 − f ( x ) = − 1 \left\{\begin{array}{l}\lim _{x \rightarrow 1^{+}} f(x)=1^{2}=1 \\ \lim _{x \rightarrow 1^{-}} f(x)=-1\end{array}\right. {limx1+f(x)=12=1limx1f(x)=1
可以看出1是跳越间断点


因为函数是偶函数,那么-1也是跳越间断点.


解毕







例2:求极限 lim ⁡ t → x ( sin ⁡ t sin ⁡ x ) x sin ⁡ t − sin ⁡ x \lim _{t \rightarrow x}\left(\frac{\sin t}{\sin x}\right)^{\frac{x}{\sin t-\sin x}} limtx(sinxsint)sintsinxx,记此极限为 f ( x ) f(x) f(x),求函数 f ( x ) f(x) f(x)的间断点冰指出类型.

分析&思路:

lim ⁡ t → x ( sin ⁡ t sin ⁡ x ) x sin ⁡ t − sin ⁡ x \lim _{t \rightarrow x}\left(\frac{\sin t}{\sin x}\right)^{\frac{x}{\sin t-\sin x}} txlim(sinxsint)sintsinxx

  • 首先,和例1一样,是 f ( x ) f(x) f(x)=一个极限
  • 同样,区分函数自变量x和极限因子t,在极限中x为一个常数.
  • f ( x ) f(x) f(x)函数 很显然这是1的∞次方型极限
  • 直接用结论:
    " 1 ∞ 1^{\infty} 1 " 型极限常用结论
    lim ⁡ α ( x ) = 0 , lim ⁡ β ( x ) = ∞ \lim \alpha(x)=0, \lim \beta(x)=\infty limα(x)=0,limβ(x)=, 且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x)=A limα(x)β(x)=A.
    lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A . \lim [1+\alpha(x)]^{\beta(x)}=e^{A} . lim[1+α(x)]β(x)=eA.

可以归纳为以下三步:

  1. 写标准形式 \quad 原式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) =\lim [1+\alpha(x)]^{\beta(x)} =lim[1+α(x)]β(x);
  2. 求极限 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x) \beta(x)=A limα(x)β(x)=A;
  3. 写结果 原式 = e A . =e^{A} . =eA.

开始解题:
f ( x ) = lim ⁡ t → x [ 1 + sin ⁡ t − sin ⁡ x sin ⁡ x ] x sin ⁡ t − sin ⁡ x f(x)=\lim _{t \rightarrow x}\left[1+\frac{\sin t-\sin x}{\sin x}\right]^{\frac{x}{\sin t-\sin x}} f(x)=limtx[1+sinxsintsinx]sintsinxx


lim ⁡ t → x sin ⁡ t − sin ⁡ x sin ⁡ x ⋅ x sin ⁡ t − sin ⁡ x = lim ⁡ t → x x sin ⁡ x \lim _{t \rightarrow x} \frac{\sin t-\sin x}{\sin x} \cdot \frac{x}{\sin t-\sin x}=\lim _{t \rightarrow x} \frac{x}{\sin x} limtxsinxsintsinxsintsinxx=limtxsinxx


注意结论结论!然后就有这个
∴ f ( x ) = e x sin ⁡ π \therefore f(x)=e^{\frac{x}{\sin \pi}} f(x)=esinπx


疑点: x = 0 , x = k π x=0, \quad x=k \pi x=0,x=kπ


lim ⁡ x → 0 f ( x ) = e lim ⁡ x → 0 x s i n x = e \lim _{x \rightarrow 0} f(x)=e^{\lim _{x \rightarrow 0} \frac{x}{sin x}}=e limx0f(x)=elimx0sinxx=e
所以x=0是可去间断点


lim ⁡ x → k π f ( x ) = e lim ⁡ x → k π k x sin ⁡ x = ∞ \lim _{x \rightarrow k \pi} f(x)=e^{\lim _{x \rightarrow k \pi} \frac{k x}{\sin x}}=\infty limxkπf(x)=elimxkπsinxkx=
所以 x = k π \quad x=k \pi x=kπ 是无穷间断点


解毕


看我心情更新loading…

  • 15
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 函数连续极限是密切相关的概念。 首先,如果一个函数在某一点处的极限存在,那么这个点可以是函数连续点。也就是说,函数在该点处连续当且仅当其在该点的左右极限存在且相等。 其次,连续函数极限函数的取值有关。具体来说,如果一个函数在某一点处连续,那么在该点的极限就等于该点的函数值。这个性质称为连续函数极限定理。 因此,函数连续极限都是研究函数局部性质的重要工具,它们可以帮助我们研究函数在某一点的行为,进而揭示函数的整体性质。 ### 回答2: 函数连续极限之间有着密切的联系。 连续是指在某个区间上函数不断接近某个特定值的性质。而极限则是对于函数在某一点或在无穷远处的变化趋势进行研究的工具。 具体来说,函数在某一点的连续性可以通过极限的存在与否来判断。如果函数在某一点的极限存在且等于该点的函数值,那么函数在该点是连续的。反之,如果函数在某一点的极限不存在或结果不等于函数值,那么函数在该点是不连续的。 此外,通过研究函数在无穷远处的极限,我们可以进一步了解函数连续性。当函数在无穷远处的极限存在时,我们可以说函数在无穷远处是连续的。这意味着函数的变化不会无限制地波动,而是逐渐趋于一个稳定的值。 综上所述,函数连续性与极限的存在与否密切相关。通过研究函数在某一点的极限函数在无穷远处的极限,我们可以判断函数连续性,并更好地理解函数的变化趋势。 ### 回答3: 函数连续极限之间存在着紧密的联系。 首先,连续性是极限的重要性质之一。如果一个函数在某一点的左极限和右极限存在且相等,并且与函数在该点的函数值相等,那么我们称这个函数在该点是连续的。也就是说,连续性是函数在每个点的极限存在性和极限函数值的一致性的综合体现。连续函数在定义域的每一点都具有这种性质。而极限则描述了函数在趋近某一特定点或者某一趋势时的行为。 其次,函数极限可以帮助我们研究连续性。通过研究函数在某一点的极限,我们可以判断函数在该点是否连续。如果一个函数在某一点的极限存在且与函数在该点的函数值相等,那么该函数在该点是连续的。因此,通过计算极限来确定函数在某一点的连续性是常见的数学问题之一。 此外,极限还可以帮助我们研究函数的性质。通过计算函数在某一点的极限,我们可以了解函数在该点的变化趋势、波动程度等。特别是函数在无穷远处的极限,可以用来分析函数在无穷尽头的行为和趋势。例如,当函数在无穷远处趋近于某一常数时,我们可以说这个函数具有水平渐近线。这些性质都可以通过计算函数极限来进行推导和证明。 综上所述,函数连续极限具有紧密的联系。函数连续性是函数在每个点的极限存在性和极限函数值的一致性的综合体现。通过研究函数极限,我们可以判断函数连续性,并进一步分析函数的性质和行为。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值