numpy与opencv中的reshape和rezise问题

本文探讨了numpy中的reshape和resize操作以及在opencv中的应用。numpy的reshape不改变原始矩阵形状,有返回值,而resize会直接修改原始矩阵且无返回值。在opencv中,resize的顺序是从x轴到y轴,需要注意行列顺序,错误的尺寸调整会导致错误。
摘要由CSDN通过智能技术生成

一、reshape

a = np.array([[1,2,3,4],             
	      [5,6,7,8],           
	      [9,10,11,12]])
print(a)

b = np.reshape(a,(12,1))
print(b)
print(a)

结果为

[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]
 [11]
 [12]]
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

所以,使用np.reshape(array,shape)不改变原始矩阵的shape,同时有返回值

a = np.array([[1,2,3,4],             
	      [5,6,7,8],            
	      [9,10,11,12]])
print(a)

b = a.reshape(12,1)
print(b)
print(a)

使用 a.reshape(shape)形式时,结果一样。

[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]
 [11]
 [12]]
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

二、resize
1.numpy中

a = np.array([[1,2,3,4],
              [5,6,7,8],
              [9,10,11,12]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值