本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。
原文链接:Mamba模型综述!
型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。
最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案。Mamba在保持对序列长度近似线性扩展性的同时,提供了与Transformers相当的建模能力。这一发展引发了越来越多的研究,积极探索Mamba在不同领域中实现卓越性能的潜力。鉴于这一快速发展,亟需一份系统的综述,以整合现有的Mamba赋能模型,并全面理解这一新兴的模型架构。
因此,在本综述中,我们对近期与Mamba相关的研究进行了深入调查,涵盖了三个主要方面:基于Mamba的模型进展、Mamba适应多样化数据的技术,以及Mamba在各种应用中的表现。具体来说,我们首先回顾了各种具有代表性的深度学习模型的基础知识,并作为预备知识介绍了Mamba-1&2的详细内容。接着,为了展示Mamba对AI的重要性,我们全面回顾了相关研究,重点关注Mamba模型的架构设计、数据适应性和应用领域。最后,我们讨论了当前的局限性,并探索了多个