机器学习AI算法工程 | NLP 实战项目:使用 BERT 进行模型微调,进行文本情感分析

本文来源公众号“机器学习AI算法工程”,仅用于学术分享,侵权删,干货满满。

原文链接:NLP 实战项目:使用 BERT 进行模型微调,进行文本情感分析

本篇我们使用公开的微博数据集(weibo_senti_100k)进行训练,此数据集已经进行标注,0: 负面情绪,1:正面情绪。数据集共计82718条(包含标题)。如下图:

下面我们使用bert-base-chinese预训练模型进行微调并进行测试。 

1. 导入必要的库

2. 加载数据集和预训练模型

3. 对数据集进行预处理

注意:此处需要打乱数据行,为了快速训练展示,下面程序只加载了1500条数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值