10道图像处理经典面试题(含答案)!

本文整理了10道图像处理领域的面试题目,涵盖膨胀腐蚀操作、点云区域增长分割、插值方法、图像类型区别、过拟合欠拟合、卷积层等知识点,并提供详细解答,帮助你更好地准备面试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试题目

今天给大家分享10道,希望能帮助到大家。

1.简述膨胀和腐蚀操作。

2.基于点云的区域增长分割方法如何实现?

3.常用的插值方法有哪些?简述这些方法。

4.彩色图像、灰度图像、二值图像和索引图像的区别是什么?

5.过拟合和欠拟合分别是什么,如何改善?

6.卷积层,pooling层,全连接层的作用分别是什么?

7.常用的边缘提取方法有哪些?

8.图像增强方法有哪些?

9.高斯滤波器的原理是什么?

10.简述Hough变换的原理。

参考答案

1.简述膨胀和腐蚀操作。

简单来说,形态学操作就是基于形状的一系列图像处理操作,通过将 结构元素 作用于输入图像来产生输出图像。(主要是基于集合论基础上的形态学数学)

膨胀和腐蚀是图像处理中最常用的形态学操作,基本运用:

消除噪声;

分割独立的图像元素,连接相邻的图像元素;

寻找图像中明显的极大值域或极小值域;

膨胀:

将原图像 A 与任意形状的内核 B(通常为正方形或圆形),进行卷积。

内核 B 有一个可定义的 锚点,通常定义为内核的中心点。

进行膨胀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” 。

腐蚀:

腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。

进行腐蚀操作时,将内核B划过图像,将内核B覆盖区域的最小相素值提取,并代替锚点位置的相素。

2.基于点云的区域增长分割方法如何实现?

算法思想:

首先依据点的曲率值对点进行排序,之所以排序是因为,区域生长算法是从曲率最小的点开始生长的,这个点就是初始种子点,初始种子点所在的区域即为最平滑的区域,从最平滑的区域开始生长可减少分割片段的总数,提高效率,设置一空的种子点序列和空的聚类区域。

选好初始种子后,将其加入到种子点序列中,并搜索邻域点,对每一个邻域点,比较邻域点的法线与当前种子点的法线之间的夹角,小于平滑阀值的将当前点加入到当前区域,然后检测每一个邻域点的曲率值,小于曲率阀值的加入到种子点序列中,删除当前的种子点,循环执行以上步骤,直到种子序列为空。

算法步骤:

(1)种子周围的临近点和种子点云相比较

(2)法线的方向是否足够相近

(3)曲率是否足够小

(4)如果满足1,2则该点可用做种子点

(5)如果只满足(1),则归类而不做种

(6)从某个种子出发,其“子种子”不再出现则一类聚集完成

(7)类的规模既不能太大也不能太小

上述算法是针对小曲率变化面设计的。尤其适合对连续阶梯平面进行分割:比如SLAM算法所获得的建筑走廊。

3.常用的插值方法有哪些?简述这些方法。

(1)最近邻插值法

将变换后的图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值