10道图像处理经典面试题(含答案)!

面试题目

今天给大家分享10道,希望能帮助到大家。

1.简述膨胀和腐蚀操作。

2.基于点云的区域增长分割方法如何实现?

3.常用的插值方法有哪些?简述这些方法。

4.彩色图像、灰度图像、二值图像和索引图像的区别是什么?

5.过拟合和欠拟合分别是什么,如何改善?

6.卷积层,pooling层,全连接层的作用分别是什么?

7.常用的边缘提取方法有哪些?

8.图像增强方法有哪些?

9.高斯滤波器的原理是什么?

10.简述Hough变换的原理。

参考答案

1.简述膨胀和腐蚀操作。

简单来说,形态学操作就是基于形状的一系列图像处理操作,通过将 结构元素 作用于输入图像来产生输出图像。(主要是基于集合论基础上的形态学数学)

膨胀和腐蚀是图像处理中最常用的形态学操作,基本运用:

消除噪声;

分割独立的图像元素,连接相邻的图像元素;

寻找图像中明显的极大值域或极小值域;

膨胀:

将原图像 A 与任意形状的内核 B(通常为正方形或圆形),进行卷积。

内核 B 有一个可定义的 锚点,通常定义为内核的中心点。

进行膨胀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” 。

腐蚀:

腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。

进行腐蚀操作时,将内核B划过图像,将内核B覆盖区域的最小相素值提取,并代替锚点位置的相素。

2.基于点云的区域增长分割方法如何实现?

算法思想:

首先依据点的曲率值对点进行排序,之所以排序是因为,区域生长算法是从曲率最小的点开始生长的,这个点就是初始种子点,初始种子点所在的区域即为最平滑的区域,从最平滑的区域开始生长可减少分割片段的总数,提高效率,设置一空的种子点序列和空的聚类区域。

选好初始种子后,将其加入到种子点序列中,并搜索邻域点,对每一个邻域点,比较邻域点的法线与当前种子点的法线之间的夹角,小于平滑阀值的将当前点加入到当前区域,然后检测每一个邻域点的曲率值,小于曲率阀值的加入到种子点序列中,删除当前的种子点,循环执行以上步骤,直到种子序列为空。

算法步骤:

(1)种子周围的临近点和种子点云相比较

(2)法线的方向是否足够相近

(3)曲率是否足够小

(4)如果满足1,2则该点可用做种子点

(5)如果只满足(1),则归类而不做种

(6)从某个种子出发,其“子种子”不再出现则一类聚集完成

(7)类的规模既不能太大也不能太小

上述算法是针对小曲率变化面设计的。尤其适合对连续阶梯平面进行分割:比如SLAM算法所获得的建筑走廊。

3.常用的插值方法有哪些?简述这些方法。

(1)最近邻插值法

将变换后的图像中的原像素点最邻近像素的灰度值赋给原像素点的方法。其实就是根据坐标的变换,找出目标图像中的坐标 对应于 原图像中的坐标,再把原图像中坐标位置的值 填到 目标图像坐标中的值。

(2)双线性插值

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。首先跟最近邻插值一样,先坐标映射,得到目标图像坐标位于原图像的位置,但是这里不再对求出来的小数坐标取整,而是通过举例所求坐标最邻近的四个坐标点,对他们先从X方向作插值,再作Y方向的插值,得到最后的结果,因此也叫 双线性插值。

(3)双三次插值

是二维空间中最常用的插值方法。在这种方法中,函数 f 在点 (x, y) 的值可以通过矩形网格中最近的十六个采样点的加权平均得到,在这里需要使用两个多项式插值三次函数,每个方向使用一个。

(4)三线性卷积插值

三次卷积插值法可查看16个与输出最近的像元中心,并拟合一条平滑的曲线,使其穿过这些点从而找到该值。这不仅更改了输入的值,而且还可能导致输出值超出输入值的范围(可想象某表面出现汇或峰的情况)。此外,尽管不推荐将这种方法用于分类数据,但该方法在平滑的连续数据方面十分出色。

4.彩色图像、灰度图像、二值图像和索引图像的区别是什么?

彩色图像的每个像素通常是由红、绿、蓝三个分量来表示的,分量在[0,255]区间内。

灰度图像是每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,有256个灰度级。

索引图像除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256×3,用MAP=[RGB]表示。

MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由64行的[RGB]组合决定。

5.过拟合和欠拟合分别是什么,如何改善?

过拟合:

过拟合是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合。具体表现就是最终模型在训练集上效果好;在测试集上效果差。模型泛化能力弱。

抑制过拟合的方法:

(1)数据处理:清洗数据、减少特征维度、类别平衡。

(2)辅助分类节点:在Google Inception V1中,采用了辅助分类节点的策略,即将中间某一层的输出用作分类,并按一个较小的权重加到最终的分类结果中,这样相当于做了模型的融合,同时给网络增加了反向传播的梯度信号,提供了额外的正则化的思想。

(3)正则化:获取更多数据:从数据源获得更多数据,或数据增强。

欠拟合:

现象:训练的模型在训练集上面的表现很差,在验证集上面的表现也很差。

原因:模型发生欠拟合的最本质原因是“训练的模型太简单,最通用的特征模型都没有学习到”;

措施:

(1)做特征工程,添加更多的特征项。即提供的特征不能表示出那个需要的函数。

(2)减少正则化参数。即使得模型复杂一些。

(3)使用更深或者更宽的模型。

(4)使用集成方法。融合几个具有差异的弱模型,使其成为一个强模型。

6.卷积层,pooling层,全连接层的作用分别是什么?

卷积层的特点是局部感知、参数共享和多核卷积。

局部感知:

在传统神经网络中每个神经元都要与图片上每个像素相连接,这样的话就会造成权重的数量巨大造成网络难以训练。而在含有卷积层的的神经网络中每个神经元的权重个数都时卷积核的大小,这样就相当于没有神经元只与对应图片部分的像素相连接。这样就极大的减少了权重的数量。

同时我们可以设置卷积操作的步长,假设将上图卷积操作的步长设置为3时每次卷积都不会有重叠区域(在超出边界的部分补自定义的值)。局部感知的直观感受如下图:

使用局部感知的原因是一般人们认为图片中距离相近的部分相关性较大,而距离比较远的部分相关性较小。在卷积操作中步长的设置就对应着距离的远近。但是步长的设置并无定值需要使用者尝试。

参数共享:卷积核的权重是经过学习得到的,并且在卷积过程中卷积核的权重是不会改变的。通过一个卷积核的操作提取了原图的不同位置的同样特征。简单来说就是在一幅图片中的不同位置的相同目标,它们的特征是基本相同的。其过程如下图:

多核卷积:用一个卷积核操作只能得到一部分特征可能获取不到全部特征,然后引入了多核卷积。用每个卷积核来学习不同的特征(每个卷积核学习到不同的权重)来提取原图特征。

上图的图片经过三个卷积核的卷积操作得到三个特征图。需要注意的是,在多核卷积的过程中每个卷积核的大小应该是相同的。

Pooling层:

通常会在卷积层之间周期性插入一个池化层, 其作用是逐渐降低数据体的空间尺寸, 这样就能够减少网络中参数的数量,减少计算资源耗费,同时也能够有效地控制过拟合。

池化层和卷积层一样也有一个空间窗口,通常采用的是取这些窗口中的最大值作为输出结果,然后不断滑动窗口,对输入数据体每一个深度切片单独处理,减少它的空间尺寸,如下图所示

从上图能够看出池化层能够有效降低数据体空间的大小,下图形象地说明了窗口大小是2,滑动步长是2的最大值池化是如何计算的:每次都从2×2的窗口中选择最大的数值,同时每次滑动2个步长进入新的窗口。

池化层之所以有效,是因为之前介绍的图片特征具有不变性, 也就是通过下采样不会丢失图片拥有的特征,由于这种特性,我们可以将图片缩小再进行卷积处理,这样能够大大降低卷积运算的时间。

最常用的池化层形式是尺寸为2×2的窗口,滑动步长为2,对图像进行下采样,将其中75%的激活信息都丢掉,选择其中最大的保留下来,这其实是因为我们希望能够更加激活里面的数值大的特征,去除一些噪声信息。

全连接层:

每个神经元与前一层所有的神经元全部连接, 而卷积神经网络只和输入数据中的一个局部区域连接,并且输出的神经元每个深度切片共享参数。

一般经过了一系列的卷积层和池化层之后,提取出图片的特征图,比如说特征图的大小是3×3×512,这个时候, 将特征图中的所有神经元变成全连接层的样子,直观上也就是将一个3D的立方体重新排列, 变成一个全连接层, 里面有3×3×512=4608个神经元,再经过几个隐藏层,最后输出结果。

在这个过程中为了防止过拟合会引入Dropout。最近的研究表明,在进入全连接层之前,使用全局平均池化能够有效地降低过拟合。

7.常用的边缘提取方法有哪些?

(1)一阶导数的边缘算子

通过模板作为核与图像的每个像素点做卷积和运算,然后选取合适的阈值来提取图像的边缘。常见的有Roberts算子、Sobel算子和Prewitt算子。

(2)二阶导数的边缘算子

依据于二阶导数过零点,常见的有Laplacian 算子,此类算子对噪声敏感。

(3)其他边缘算子

前面两类均是通过微分算子来检测图像边缘,还有一种就是Canny算子,其是在满足一定约束条件下推导出来的边缘检测最优化算子。

即:

一阶导数:sobel、Roberts、prewitt等算子

二阶导数:Laplacian、Canny算子

Canny算子效果比其他的都要好,但是实现起来有点麻烦。

8.图像增强方法有哪些?

图像增强(image augmentation)指通过剪切、旋转/反射/翻转变换、缩放变换、平移变换、尺度变换、对比度变换、噪声扰动、颜色变换等一种或多种组合数据增强变换的方式来增加数据集的大小。

图像增强的意义是通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模,而且随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。

常见的图像增强方式可以分为两类:几何变换类和颜色变换类。

(1)几何变换类,主要是对图像进行几何变换操作,包括**翻转,旋转,裁剪,变形,缩放**等。

(2)颜色变换类,指通过模糊、颜色变换、擦除、填充等方式对图像进行处理。

9.高斯滤波器的原理是什么?

高斯滤波器是空间滤波器的一种,学习高斯滤波器,需要空间滤波的知识作为先验知识。

高斯滤波器是一种平滑线性滤波器,使用高斯滤波器对图像进行滤波,其效果是降低图像灰度的“尖锐”变化,也就是使图像“模糊”了。高斯滤波对于抑制服从正态分布的噪声效果非常好,其代价是使图像变得“模糊”。当然,有时对图像进行平滑滤波的目的就是让图像变得模糊。

高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。

其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小。

10.简述Hough变换的原理。

Hough变换的实质是将图像空间内具有一定关系的像元进行聚类,寻找能把这些像元用某一解析形式联系起来的参数空间累积对应点。在参数空间不超过二维的情况下, 这种变换有着理想的效果。

但是,一旦参数空间增大,计算量便会急剧上升,同时耗费巨大的存储空间,耗时也随之猛增。就此,多年来国内外众多学者针对具体情况对常规Hough变换进行了多方面的探索,并提出了许多有价值的改进方法。

Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。

设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。

即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。

我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(2,2)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。

同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。

在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p---theta平面上的一条曲线上,其它的还是一样。

  • 17
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字图像处理面试题通常涉及以下几个方面的内容: 1. 图像处理基础知识:包括灰度图像、彩色图像、二值图像和索引图像的区别,常用的图像处理方法和算子,如均值滤波、中值滤波、高斯滤波、Sobel算子、拉普拉斯算子等等。 2. 特征提取与目标检测:常用的特征提取方法和目标检测算法,如SIFT、HOG、Haar特征、卷积神经网络等,以及它们在目标检测中的应用。 3. 图像分割与边缘提取:常用的图像分割算法,如阈值分割、边缘检测、区域生长算法等,以及如何提取图像的边缘信息。 4. 插值方法与图像缩放:常用的插值方法,如最近邻插值、双线性插值、双三次插值等,以及如何实现图像的放大和缩小。 5. 数字图像识别与深度学习:数字图像识别的流程,包括特征提取、分类器的选择和训练等。深度学习中常用的目标检测方法,如RCNN、YOLO、SSD等,以及深度学习与传统机器学习算法的区别。 6. C语言编程:与图像处理相关的C语言编程题目,如图像的读取与存储、图像的预处理、算法的实现等。 7. 其他问题:深入了解各种算法的细节,如神经网络、SVM、AdaBoost、kNN等,以及过拟合和欠拟合的定义和改善方法。 以上是数字图像处理面试题中常见的一些问题。建议准备这些知识点,并根据实际情况进行深入学习和准备。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [图像处理笔试面试题](https://blog.csdn.net/xingchenbingbuyu/article/details/78784654)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [图像处理-最常见面试题(必问)](https://blog.csdn.net/cc13186851239/article/details/114290940)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值