面试题目
今天给大家分享10道,希望能帮助到大家。
1.简述膨胀和腐蚀操作。
2.基于点云的区域增长分割方法如何实现?
3.常用的插值方法有哪些?简述这些方法。
4.彩色图像、灰度图像、二值图像和索引图像的区别是什么?
5.过拟合和欠拟合分别是什么,如何改善?
6.卷积层,pooling层,全连接层的作用分别是什么?
7.常用的边缘提取方法有哪些?
8.图像增强方法有哪些?
9.高斯滤波器的原理是什么?
10.简述Hough变换的原理。
参考答案
1.简述膨胀和腐蚀操作。
简单来说,形态学操作就是基于形状的一系列图像处理操作,通过将 结构元素 作用于输入图像来产生输出图像。(主要是基于集合论基础上的形态学数学)
膨胀和腐蚀是图像处理中最常用的形态学操作,基本运用:
消除噪声;
分割独立的图像元素,连接相邻的图像元素;
寻找图像中明显的极大值域或极小值域;
膨胀:
将原图像 A 与任意形状的内核 B(通常为正方形或圆形),进行卷积。
内核 B 有一个可定义的 锚点,通常定义为内核的中心点。
进行膨胀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” 。
腐蚀:
腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。
进行腐蚀操作时,将内核B划过图像,将内核B覆盖区域的最小相素值提取,并代替锚点位置的相素。
2.基于点云的区域增长分割方法如何实现?
算法思想:
首先依据点的曲率值对点进行排序,之所以排序是因为,区域生长算法是从曲率最小的点开始生长的,这个点就是初始种子点,初始种子点所在的区域即为最平滑的区域,从最平滑的区域开始生长可减少分割片段的总数,提高效率,设置一空的种子点序列和空的聚类区域。
选好初始种子后,将其加入到种子点序列中,并搜索邻域点,对每一个邻域点,比较邻域点的法线与当前种子点的法线之间的夹角,小于平滑阀值的将当前点加入到当前区域,然后检测每一个邻域点的曲率值,小于曲率阀值的加入到种子点序列中,删除当前的种子点,循环执行以上步骤,直到种子序列为空。
算法步骤:
(1)种子周围的临近点和种子点云相比较
(2)法线的方向是否足够相近
(3)曲率是否足够小
(4)如果满足1,2则该点可用做种子点
(5)如果只满足(1),则归类而不做种
(6)从某个种子出发,其“子种子”不再出现则一类聚集完成
(7)类的规模既不能太大也不能太小
上述算法是针对小曲率变化面设计的。尤其适合对连续阶梯平面进行分割:比如SLAM算法所获得的建筑走廊。
3.常用的插值方法有哪些?简述这些方法。
(1)最近邻插值法
将变换后的图