如果特征的数量小,样本的数量正常,则选用SVM+高斯核函数;
如果特征的数量小,而样本的数量很大,则需要手工添加一些特征从而变成第一种情况。
3.图像插值算法有哪些?
最邻近插值,线性插值,双线性插值,双三次插值,三线性卷积插值。
4.比较字符串
5.给定0-1矩阵,求连通域。
6.写一个函数,求灰度图的直方图。
7.写一个均值滤波(中值滤波)。
8.写出高斯算子,Sobel算子,拉普拉斯算子等,以及它们梯度方向上的区别。
9.常用的特征提取方法。
10.常用的目标检测方法
11.常用的边缘提取方法。
12.常用的插值方法。
13.常用的图像分割算法。
14.写一个图像resize函数(放大和缩小)。
15.彩色图像、灰度图像、二值图像和索引图像区别?(索引图像到底是啥?)
16.深度学习中目标检测的常用方法,异同。
17.给定摄像头范围和图像大小求分辨率。
18.如何检测图片中的汽车,并识别车型,如果有遮挡怎么办?
19.数字识别的流程。
20.介绍神经网络、SVM、AdaBoost、kNN…(每一个都可能深入问各种细节)
21.写梯度下降代码。
22.卷积神经网络与神经网络的区别。
23.卷积层的作用、pooling层的作用,全连接层的作用。
24.过拟合和欠拟合分别是什么,如何改善。
25.1x1卷积和的作用。
26.计算卷积神经网络某一层参数量。
27.opencv遍历像素的方式?
28.LBP原理?
29.HOG特征计算过程,还有介绍一个应用HOG特征的应用?
30.opencv里面mat有哪些构造函数?
31.如何将buffer类型转化为mat类型?
32.opencv如何读取png格式的图片?
33.opencv如何读取内存图片?
34.opencv里面有哪些库?
35.用过opencv里面哪些函数?
36.opencv里面为啥是bgr存储图片而不是人们常听的rgb?
37.你说opencv里面的HOG+SVM效果很差?他就直接来了句为啥很差?差了就不改了?差了就要换其他方法?、
38.讲讲HOG特征?他在dpm里面怎么设计的,你改过吗?HOG能检测边缘吗?里面的核函数是啥?那hog检测边缘和canny有啥区别?
总结
在这里,由于面试中MySQL问的比较多,因此也就在此以MySQL为例为大家总结分享。但是你要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了
要学习的往往不止这一点,还有一些主流框架的使用,Spring源码的学习,Mybatis源码的学习等等都是需要掌握的,我也把这些知识点都整理起来了
[外链图片转存中…(img-8cbNHOgU-1716568653649)]
[外链图片转存中…(img-jHHbN4fD-1716568653650)]