题目:给定一个有序数列和target值,判断target是否在序列中,并返回index,序列中的值可能重复,需要返回最大的index值
解法:二分查找
python版代码
1.非递归算法
def binary_search(lis, nun):
left = 0
right = len(lis) - 1
while left <= right: #循环条件
mid = (left + right) // 2 #获取中间位置,数字的索引(序列前提是有序的)
if num < lis[mid]: #如果查询数字比中间数字小,那就去二分后的左边找,
right = mid - 1 #来到左边后,需要将右变的边界换为mid-1
elif num > lis[mid]: #如果查询数字比中间数字大,那么去二分后的右边找
left = mid + 1 #来到右边后,需要将左边的边界换为mid+1
else:
return mid #如果查询数字刚好为中间值,返回该值得索引
return -1 #如果循环结束,左边大于了右边,代表没有找到
lis = [11, 32, 51, 21, 42, 9, 5, 6, 7, 8]
print(lis)
lis.sort()
print(lis)
while 1:
num = int(input('输入要查找的数:'))
res = binary_search(lis, num)
print(res)
if res == -1:
print('未找到!')
else:
print('找到!')
2.递归算法
def binary_search(lis, left, right, num):
if left > right: #递归结束条件
return -1
mid = (left + right) // 2
if num < lis[mid]:
right = mid -1
elif num > lis[mid]:
left = mid + 1
else:
return mid
return binary_search(lis, left, right, num)
#这里之所以会有return是因为必须要接收值,不然返回None
#回溯到最后一层的时候,如果没有return,那么将会返回None
lis = [11, 32, 51, 21, 42, 9, 5, 6, 7, 8]
print(lis)
lis.sort()
print(lis)
while 1:
num = int(input('输入要查找的数:'))
res = binary_search(lis, 0, len(lis)-1,num)
print(res)
if res == -1:
print('未找到!')
else:
print('找到!')
C++版本
迭代法实现:
#include<iostream>
using namespace std;
int binary_search(int arr[], int low, int high, int key)
{
//查找某元素是否存在于数组中 若存在,则返回下标;否则返回-1
while (low <= high) {
// 检查key是否在中间
int mid = low + (high - low) / 2;
if (arr[mid] == key)
return mid;
// 如果x大于arr[mid] 则low = mid+1;否则high=mid-1
if (arr[mid] < key)
low = mid + 1;
else
high = mid - 1;
}
return -1;
}
int main()
{
int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
int result = binary_search(arr, 0, n - 1, x);
(result == -1) ? cout << "Element is not present in array"
: cout << "Element is present at index " << result;
return 0;
}
递归法实现:
# include<iostream>
using namespace std;
int binary_search(int arr[],int low , int high, int key)
{
""" 通过递归二分查找 查找元素"""
if(low<=high){
int mid = low + (high-low)/2;
//若元素在中间
if(arr[mid] == key)
return mid;
// 若元素比中间的数小 那么它只可能在左边的子数组中 则可另high = mid -1
elif (arr[mid] > key)
return binary_search(arr,low,mid-1,key);
//否则 只可能在右边的子数组汇总 则可令low = mid+1
return binary_search(arr,mid+1,high,key);
}
// 该元素不在数组中
return -1;
}
int main()
{
int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
int result = binary_search(arr, 0, n - 1, x);
(result == -1) ? cout << "Element is not present in array"
: cout << "Element is present at index " << result;
return 0;
}