程序员代码构建困局

作者 | Roy Osherove

译者 | 弯月,责编 | 屠敏

头图 | CSDN 下载自东方 IC

出品 | CSDN(ID:CSDNnews)

以下为译文:

我们需要根据代码的反馈来决定是否应该继续修改代码还是应该发布,而构建(即编译+运行测试+部署+更多测试等)正是获取该反馈的瓶颈。影响构建的主要因素有两个:

  • 构建运行的频率(每次代码提交、每小时、每周等等)

  • 构建需要花费多长时间才能完成

许多公司还会下功夫减少对手动QA环节的依赖等,但在过渡过程中(例如建立更多的自动化测试,或存在目前无法实现自动化的测试),仍需一些手动测试或验证。因此,我们还需要考虑一个额外的因素:

  • 何时需要手动验证

有时,由于部署要求、环境要求或构建可执行文件的要求,只能在构建完成后才能进行手动验证。这意味着构建是流程中的约束之一。

频率是新的约束

根据“限制理论”,我们可以做以下假设:

  • 版本之间的时间越长,每个版本所容纳的改动就越多

  • 这意味着修改的批量越大,这又意味着:

    我们需要测试/验证的内容就越多——手动测试需要的时间更长,从而导致反馈循环加长

    由于变化更多,所以每个人的紧张程度加剧,风险也越高,并且更有可能要求进行更多的验证

那么,我们怎样做才能缩小每个构建的批量,并获得更迅速的反馈循环呢?

答案简单明了:更频繁地运行构建。但是,究竟多久一次呢?

我发现许多团队都在背道而驰,他们会想:

由于构建过程需要花费很长时间(4个小时),所以我们只能每晚或每周运行一次。

其实,这种想法正好相反,我们应该想:

因为构建需要花费四个小时,因此我们应该每四个小时就运行一次。

这种做法的好处?

  • 反馈循环时间从每天构建一次的24个小时,或者每周构建一次的好几天,减少到4-8个小时。假设开发人员现在修改了代码,那么他们就能赶上下一次(几个小时内开始,并在4个小时后结束)的构建。虽然这个方法并不完美,但总胜于等到第二天或本周末才能把修改的代码推送到主分支。

  • 我们始终有一个“最新的稳定版本”,每4个小时就能产生一个最新的成功版本。假设这个构建能够部署到动态演示环境中,则意味着我们始终有最新的演示版本来展示,最多只需等待4个小时。

  • 大幅削减批量:4小时能有多少代码修改?肯定比24小时修改的代码少,对不对?这意味着验证速度也会加快。

这还意味着,如果我需要手动验证已解决的问题,那也不必等到明天再验证集成版本,最坏的情况,也只需等待8个小时(当天就可以到手!)。

构建的时长是下一个约束

现在(在我们设置了恰当的构建运行时间之后),我们减少了构建之间的等待时间,下一个阻碍反馈循环缩短的重大约束就是构建时长。

我们为缩短构建时间而做出的每项变更(例如,通过并行测试或步骤)都会影响到反馈循环的缩短,而现在构建时间就是我们的反馈周期。如果构建只需要一个小时(而不是四个小时),那么我们可以每小时运行一次。

因此,在修改完代码、提交并推送之后,我需要在1-2小时内手动验证集成版本所包含的代码改动。这些工作都发生在同一天。

如果构建需要30分钟怎么办?同理,循环周期就是30-60分钟。

环境可能是最原始的约束(瓶颈)

如果你的环境有问题,那么本文等于白说了。

有时,团队不得不减少运行构建的次数,因为他们不想部署到静态环境,有可能别人也在用同一个环境。我之前曾提过:静态环境是一个巨大的瓶颈。

因此,一个重要的因素是:你是否可以在指定的时间或其他限制内,每完成一次构建就重新部署一次环境。好消息是,如果你使用的是Docker和Kubernetes之类的工具,那么每完成一次构建,只需5分钟就能动态生成Kubernetes的命名空间。

99%的静态环境都应已成为过去,我们需要思考的是,如何要求因循守旧的IT部门采用新工具来引入这些新的观念。

你可能也需要解决这个问题,或者至少创建一个不需要人介入、完全自动化的静态环境,这有这样你才能摆脱这个约束,并着眼本文讨论的这个话题。

原文:https://pipelinedriven.org/article/if-builds-take-4-hours-run-them-every-4-hours

本文为 CSDN 翻译,转载请注明来源出处。

更多精彩推荐
☞再见 Python,Hello Julia!
☞GitHub 超 32,000 Star!火了近十年的阿里开源项目 Apache Dubbo 云原生实践
☞你现在从事的程序员还有多久会消失?牛津大学研究员帮你算了算
☞一次对语音技术的彻底批判
☞后端程序员必备:书写高质量SQL的30条建议
☞到底是哪些人在玩链游?| 《区块链游戏玩家研究报告》
你点的每个“在看”,我都认真当成了喜欢
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值