当地时间12月3日,AWS re:Invent 2024大会进入第二天,今年6月履新亚马逊AWS CEO 的Matt Garman,携手前AWS CEO、如今已是亚马逊CEO的Andy Jassy,宣布了涉及计算、存储、数据库、生成式AI(GenAI)等在内的近30项重大升级与发布,让我们重新认识了亚马逊这位正在加速进击的巨人的丝滑舞步。
甫一开场,Matt Garman首先表达了AWS对Hero和社区贡献者的感谢、对创业公司的厚爱,以及“安全为先”的服务前提。
筑计算之基
当前,AWS计算家族已包括EC2、ECS、Lightstall、Lambda、Fargate、Outposts、Wavelength、EKS等成员,成为亚马逊为自己和用户提供服务的基石。
为持续筑牢计算之基、满足用户日新月异的需求,AWS与时俱进,在Nitro+Graviton自研CPU处理器系统,并与NVIDIA合作推出13个计算实例的基础上,又发布基于NVIDIA Blackwell GPU芯片的P6计算实例,此举将进一步有助于AWS夯实成为用户选择GPU云服务的绝佳之地。
此外,去年发布的Amazon Trainium2自研芯片,如今计算实例已全面可用,并且经由NeuronLink互联的四个Trn2实例、64个Trainium2芯片、最高可达到83.2千万亿次浮点运算的Trn2 UltraServers已预览可用。而为下一代生成式AI工作负载而打造的3nm工艺、40%能效提升、2倍性能的Trainium3芯片也呼之欲出。
Matt Garman还骄傲地宣布,AWS与炙手可热的大模型公司Anthropic构建了全球最大的机器学习计算集群;同时,苹果公司机器学习与AI高级总监Benoit Dupin还现身说法,分享了AWS对苹果大模型研发提供的计算服务支持,特别是在大模型后训练、优化、适配等环节等环节的深度合作。
造存储之魂
作为AWS王牌的存储产品,Amazon S3已成为运行数据湖的绝佳选择。针对Amazon S3里面日益增长的表格数据,AWS发布Amazon S3 Tables,简化基于Apache Iceberg的数据湖管理,与Amazon S3相比每秒最高可实现3倍的查询性能、10倍的事务处理能力提升。
针对海量数据查询难的问题,AWS发布其Amazon S3中数据信息最快、最简单的查找方法——Amazon S3 Metadata,将元数据与对象建立关联关系,实现自动更新对象元数据。
成数据之美
在Amazon Aurora十周年之际,发布Amazon Aurora DSQL,能在所有区域实现近乎无限的扩展,无需进行基础设施管理,采用完全无服务器的设计,甚至可以缩减到零规模;能提供99.999%的高可用性、强一致性以及低延迟的读写功能,并且与PostgreSQL兼容。在与Google Spanner的基准测试中,Amazon Aurora DSQL的读写速度比Spanner快4倍。
此外,还发布了Amazon DynamoDB global tables对多region强一致性的支持。
绽生成式AI之未来
生成式AI作为AWS当前最重点的投入领域,本次大会在四个方向进行了全面发布——Amazon Bedrock、Amazon Nova、Amazon Q、Amazon SageMaker。
Amazon Bedrock
基于“没有一个模型可以适用于所有业务场景”考虑而生的Amazon Bedrock,在继续集成业界众多大模型的同时,进行了多项发布。
1. 发布Amazon Bedrock Model Distillation模型蒸馏功能,实现小模型又快又好地在特定场景的使用。
2. 发布Amazon Bedrock Automated Reasoning checks自动化推理检查功能,防止因模型幻觉而导致的事实性错误。
3. 发布Amazon Bedrock multi-agent collaboration多智能体协作功能,以处理处理复杂的工作流程。
可以看出,Amazon Bedrock当前已渐入佳境,找到了自己在市场中独特的存在。
Amazon Nova
亚马逊CEO Andy Jassy时隔四年再登re:Invent舞台,并带了来亚马逊大模型家族的重磅发布。
1. 四款模型:仅处理文本的模型Amazon Nova Micro,能以极低的延迟和成本提供响应;极具成本效益的多模态模型Amazon Nova Lite,能够快速处理图像、视频和文本输入;多模态模型Amazon Nova Pro,可在准确性、速度和成本之间实现绝佳平衡,适合多种任务;顶级多模态模型Amazon Nova Premier,专为复杂推理任务而生,并可用于作为“教师模型”来蒸馏定制模型,该模型预计将在2025年第一季度可用。
2. 图像生成模型Amazon Nova Canvas,能够根据输入的文本或图像生成专业级的视觉内容。它提供了便捷的编辑功能,用户可以通过文本轻松调整图像,控制颜色方案和布局。该模型内置的安全控制措施确保AI的安全和负责任使用,包括水印功能,能够追溯每张图像的来源;以及内容审核功能,限制可能产生的有害内容。根据第三方的对比评估,Amazon Nova Canvas在性能上优于OpenAI的DALL-E 3和Stable Diffusion,并在关键的自动化指标上表现出色。
3. 视频生成模型Amazon Nova Reel,能够帮助客户轻松从文本和图像创建高质量视频,适用于广告、营销和培训等内容创作。客户可以使用自然语言提示控制视觉风格和节奏,包括相机运动、旋转和缩放。根据第三方的评估,Amazon Nova Reel在质量和一致性上优于同类模型,客户更倾向于选择由其生成的视频,而非Runway的Gen-3 Alpha生成的视频。与Amazon Nova Canvas一样,Amazon Nova Reel也具备内置的安全控制措施,包括水印和内容审核。目前,Amazon Nova Reel支持生成六秒的视频,未来几个月将支持最长为两分钟的视频生成。
4. 语音到语音的Amazon Nova模型,通过理解自然语言的流式语音输入,解释语言和非语言信号(如语调和节奏),提供流畅的类人交互,彻底改变对话式AI应用,确保低延迟的双向交流。预计在2025年第一季度推出。
5. “任意到任意”模态能力的Amazon Nova模型,能够接受文本、图像、音频和视频作为输入,并以任意模态生成输出。预计将在2025年中旬推出。
Amazon Q
1. 发布三款智能体,可以帮助开发人员做单元测试、写文档、代码评审。
2. 发布内置Amazon Q的GitLab Duo+。
3. 发布Amazon Q Developer四款新功能:.NET应用从Windows到Linux转换;VMware向云原生架构转换;大型机应用转换加速迁移;AWS环境故障诊断。
4. QuickSight和Amazon Q Business data合并。
5. ISV合作伙伴可以集成Amazon Q index。
Amazon SageMaker
1. 发布下一代Amazon SageMaker——Unified Studio。
2. 发布Zero-ETL集成对第三方SaaS应用的支持。
3. 发布Amazon SageMaker Lakehouse,整合数据湖仓支持。
近两个小时的Keynote演讲,信息量巨大,本文仅总结了其中的要点。而AWS之所以能以如此快的速度涌现出如此多的创新,用Matt Garman的话说是因为“We invent so you can reinvent”。让我们共同期待大会第三天,AWS AI和数据总裁Swami Sivasubramanian的Keynote演讲。