MiniMax重磅开源M1模型:百万上下文超DeepSeek R1,实现性能与效率双杀

部署运行你感兴趣的模型镜像

图片

大模型全面迈入“长上下文、低成本、高推理”阶段。

MiniMax 正式开源其首个推理模型 M1,原生支持百万级上下文长度,在推理效率、计算成本和复杂任务能力上展现出与 DeepSeek R1、Qwen3-235B 等模型不同的技术路径与性能表现。

责编 | 梦依丹

出品丨AI 科技大本营(ID:rgznai100)

国内 AI 六小虎之一的 MiniMax 在其官方 X 平台宣布,正式开源其最新研发的大语言模型 MiniMax-M1。此举作为其“MiniMaxWeek”系列发布活动的首日亮点。

图片

MiniMax-M1 被称为是全球首个开放权重的大规模混合注意力推理模型。凭借混合门控专家架构(Mixture-of-Experts,MoE)与 Lightning Attention 的结合,MiniMax-M1 在性能表现和推理效率方面实现了显著突破。

相关链接:

  • Hugging Face:https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094

  • GitHub: https://github.com/MiniMax-AI/MiniMax-M1

  • Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf

M1 上下文 8 倍 DeepSeek,计算量仅 1/4,性能与效率双杀

M1 是基于此前发布的 MiniMax-Text-01 模型打造,具备 4560 亿参数规模,其中每个 token 激活约 459 亿参数。模型原生支持最长 100 万 tokens 的上下文输入,是 DeepSeek R1 所支持长度的 8 倍。

此外,得益于其高效的 Lightning Attention 机制,在生成长度为 10 万 tokens 的场景下,MiniMax-M1 的计算量(FLOPs)仅为 DeepSeek R1 的 25%,在长文本处理任务中具备显著优势。


超 3000 人的「AI 产品及应用交流」社群,不错过 AI 产品风云!诚邀所有 AI 产品及应用从业者、产品经理、开发者和创业者,扫码加群:

进群后,您将有机会得到:

图片

· 最新、最值得关注的 AI 产品资讯及大咖洞见

· 独家视频及文章解读 AGI 时代的产品方法论及实战经验

· 不定期赠送热门 AI 产品邀请码


在训练策略方面,MiniMax-M1 采用大规模强化学习(RL)方式,在数学推理、沙盒环境下的软件工程等多样任务中进行了全面优化。

除了混合注意力机制本身带来的 RL 训练效率提升外,MiniMax 还提出了名为 CISPO 的创新型强化学习算法。

与传统方法不同,CISPO 针对的是重要性采样权重而非 token 更新进行裁剪,有效提升了学习稳定性与性能表现,在对比实验中优于现有主流 RL 变体。

在实际训练中,MiniMax-M1 的完整强化学习训练在 512 块 H800 GPU 上仅耗时三周,成本控制在 53.47 万美元,展现了极高的效率与性价比。

目前,MiniMax-M1 提供两个版本,分别设定 40K 与 80K 的思维预算(thinking budget),其中 40K 版本为中间训练阶段的成果。

在标准基准测试中,MiniMax-M1 在复杂软件工程、工具使用与长上下文任务等方面表现突出,整体表现已达到甚至超越 DeepSeek-R1 与 Qwen3-235B 等代表性开源模型。

直接上手体验

MiniMax-M1 是开源即上线,大家进入 MiniMax 官网即可体验。

图片

官网:https://chat.minimaxi.com/

笔者直接把 MiniMax-M1 技术报告发上去,让其翻译成通俗易懂的中文技术报告。

图片

在不到 30 秒的时间,报告里的公式、表格全部放都翻译出来了。

图片

图片

感兴趣的同学可以直接上手体验起来。


📢 2025 全球产品经理大会

8 月 15–16 日 

北京·威斯汀酒店

2025 全球产品经理大会将汇聚互联网大厂、AI 创业公司、ToB/ToC 实战一线的产品人,围绕产品设计、用户体验、增长运营、智能落地等核心议题,展开 12 大专题分享,洞察趋势、拆解路径、对话未来。

更多详情与报名,请扫码下方二维码。

图片

您可能感兴趣的与本文相关的镜像

Qwen3-14B

Qwen3-14B

文本生成
Qwen3

Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值