高通 AI Hub 上手指南

文章介绍了如何使用高通AIHub在2024MWC大会上发布的平台,通过PyTorch示例实现MobileNet模型的云端托管、优化和部署,包括安装环境设置、APIToken配置以及模型编译和部署流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章介绍

         2月26日,高通在2024年世界移动通信大会(MWC2024)上发布高通AI Hub, AI Hub 简化了AI 模型部署到边缘设备的过程。可以利用AI-hub云端托管 Qualcomm 设备上,在几分钟内完成模型的优化、验证和部署。本文以Pytorch版本的MobileNet模型为例子,介绍如何使用AI Hub。

更多关于Qualcomm AI Hub的入门指南,可以参考文档 Getting started — qai-hub documentation

第一步. 安装环境

建议使用Miniconda来管理您的python版本和环境。

Installing Miniconda — Anaconda documentation

1. Python环境

在您的机器上安装miniconda。

Windows:安装完成后,从「开始」菜单打开Anaconda Prompt。

macOS/Linux:安装完成后,打开一个新的shell窗口。

为Qualcomm AI Hub设置一个环境:

conda create python=3.8 -n qai_hub

conda activate qai_hub

2. 安装qai-hub客户端

pip3 install qai-hub

3. 登录

登陆到 Qualcomm AI Hub

Home - Qualcomm AI Hub

使用您的高通ID登录,登录后导航Account -> Settings -> API Token。生成API token后进入下一步配置您的客户端。

4. 配置API Token

接下来,在终端中使用以下命令使用API令牌配置客户端:

qai-hub configure --api_token INSERT_API_TOKEN

INSERT_API_TOKEN 是你在第3步中生成的token

您可以通过获取可用设备的列表来检查API令牌是否正确安装。为此,您可以在Python终端中键入以下内容:

import qai_hub as hub

hub.get_devices()

第二步. 模型编译部署(PyTorch)

设置好Qualcomm AI Hub环境后,我们演示如何模型给到AI-hub托管的云端设备,完成模型的编译与优化。

首先,安装此示例的依赖项:

pip3 install "qai-hub[torch]"

注意:如果任何代码段因API身份验证错误而失败,则表示您没有安装有效的API Token。请参阅安装说明以了解如何设置。

如果任何代码段因SSL:CERTIFICATE_VERIFY_FAILED错误而失败,则安装了SSL拦截和流量检查工具。请向您的IT部门咨询如何为Python pip和Python请求库设置证书的说明。

提交MobileNet v2网络的性能分析:

from typing import Tuple

import torch

import torchvision

import qai_hub as hub

# Using pre-trained MobileNet

torch_model = torchvision.models.mobilenet_v2(pretrained=True)

torch_model.eval()

# Trace model

input_shape: Tuple[int, ...] = (1, 3, 224, 224)

example_input = torch.rand(input_shape)

pt_model = torch.jit.trace(torch_model, example_input)

# Profile model on a specific device

compile_job, profile_job = hub.submit_compile_and_profile_jobs(

    pt_model,

    name="MyMobileNet",

    device=hub.Device("Samsung Galaxy S23 Ultra"),

    input_specs=dict(image=input_shape),

)

这将提交一个编译工作,然后提交一个分析工作,打印这两个工作的URL。可以在

https://app.aihub.qualcomm.com/jobs/ 上查看您的所有作业的结果。

也可以通过编程方式查询工作的状态:

status = profile_job.get_status()

print(status)

您可以使用下面的代码段访问工作的结果。主要有三个部分

Profile:JSON格式的概要文件的结果。

Target Model:已优化的模型可供部署。

Results:包含所有工件(包括日志)的文件夹。

请注意,这些正在阻止等待工作完成的API调用:

#将配置文件结果下载为JSON(blocking call)

profile = profile_job.download_profile()

print(profile)

#下载优化模型(blocking call)

model = profile_job.model.download()

print(model)

#将结果下载到当前目录(blocking call)

profile_job.download_results(".")

 作者:高通工程师,戴忠忠(Zhongzhong Dai)

### 高通 SensorHub 技术概述 高通 SensorHub 是一种集成传感器处理单元,旨在优化移动设备中的低功耗传感器管理。该组件能够独立于主要的应用处理器运行,从而降低整体能耗并提高效率。SensorHub 支持多种类型的传感器输入,包括但不限于加速计、陀螺仪和其他环境感知元件[^3]。 #### 主要特性 - **低功耗架构**:通过专门设计的硬件和软件框架来最小化电力消耗,在后台持续监测来自多个传感器的数据流而不显著影响电池寿命。 - **高效能运算能力**:具备足够的计算资源用于执行复杂的算法,如运动识别和服务情境判断等功能。 - **灵活接口支持**:不仅限于 I2C 接口协议,还兼容 SPI 和其他常见连接标准,便于与其他外围器件交互操作[^4]。 ```python # Python伪代码展示如何配置一个典型的I2C传感器读取过程 import smbus def read_sensor_data(bus, address): data = bus.read_i2c_block_data(address, 0x00, 6) x_acc = (data[1] << 8 | data[0]) / 16.0 y_acc = (data[3] << 8 | data[2]) / 16.0 z_acc = (data[5] << 8 | data[4]) / 16.0 return {"X": x_acc, "Y": y_acc, "Z": z_acc} i2c_bus = smbus.SMBus(1) # 使用SMBus库实例化总线对象 sensor_address = 0x1D # 假设这是目标传感器地址 acceleration_values = read_sensor_data(i2c_bus, sensor_address) print(f"Acceleration Values: {acceleration_values}") ``` 此段Python代码展示了利用 SMBus 库与指定地址上的 I2C 设备(例如上述提到的 G-Sensor 芯片)进行通信的方法,并从中获取 XYZ 方向上的加速度数值[^1]。 #### 应用场景举例 - **健康追踪器**:借助内置的各种生物特征感应装置以及外部可穿戴配件的支持,可以精确记录用户的日常活动情况,提供个性化的健康管理建议。 - **增强现实体验**:结合视觉惯导系统(VIO),使得 AR/VR 场景下的物体定位更加精准自然;同时也能改善手势控制精度,让用户享受更流畅的人机互动效果。 - **智能家居控制系统**:作为家庭自动化网络的一部分,帮助实现对室内温度湿度光照强度等多项参数的实时监控调节,进而构建起舒适安全的生活空间[^5]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值