SSIM和PSNR等图像参数调用-20200917

本文介绍了几种常用的图像相似度评估指标,包括均方误差(MSE)、归一化均方根误差(NRMSE)、峰值信噪比(PSNR)、结构相似度(SSIM)及平均绝对误差(MAE),这些指标可用于图像处理、计算机视觉等领域中,帮助开发者准确地评估两幅图像之间的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两幅图像常用比较参数,不用重复造轮子了。

from skimage.metrics import mean_squared_error as mse
# from skimage.measure import compare_mse as mse2
from skimage.metrics import normalized_root_mse as nrm
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
def mae(img1, img2):
    mae = np.mean( abs(img1 - img2)  )
    return mae

https://cloud.tencent.com/developer/section/1414961还有其他常用参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值