智能制造数字孪生概念模型与关键技术

智能制造是新质生产力形成和发展的重要驱动力,是工业 4.0/5.0 的核心,以及推动实现高效、灵活、绿色、智能的生产方式。数字孪生技术作为智能制造的关键技术之一,通过构建物理设备与虚拟模型之间的实时映射和同步,为制造业的智能化、高效化提供有力支持,推动制造业的转型升级。

智能制造数字孪生是在现代传感技术、网络技术、自动化技术、拟人化智能技术等技术的基础上,通过智能化的感知、人机交互、决策和执行技术,对产品、制造过程或整个工厂进行虚拟仿真,实现设计过程、制造过程、管理过程和制造装备智能化,提高制造企业产品研发、制造和管理效率,是信息技术、智能技术与装备制造技术的深度融合与集成。例如,在产品设计方面,通过数字孪生构建产品虚拟模型,进行产品性能仿真和优化设计,提高产品设计质量和效率 ;在生产制造方面,实时监控生产过程,预测设备故障,优化生产流程,降低生产成本 ;在供应链管理方面,基于数字孪生实现供应链数据的集成和共享,优化资源配置,提高供应链协同效率。

本文首先介绍了智能制造数字孪生概念模型和技术框架;其次,阐述了智能制造数字孪生关键技术,最后,对未来技术发展进行展望。

1 智能制造数字孪生概念模型

1.1 概念模型要求

智能制造数字孪生概念模型 ( 以下简称“概念模型”) 是在数字空间实现物理实体及过程的属性、方法、行为等特性的数字化建模,是对实体对象外部形态、内部机理和运行关系等的整体抽象描述。概念模型主要应满足如下要求 :

(1) 持续迭代更新。在生产过程中,各类生产数据实时变化,概念模型应能根据物理实体的运行状态和反馈信息持续更新迭代,保持与物理实体的同步。

(2) 虚实交互映射。支持虚拟空间与物理空间的交互,虚拟空间既能实时反映制造过程物理空间状态,更应能通过数据融合、分析、优化、控制物理空间的运行。

(3) 多源数据驱动。制造过程涉及数据类型众多,应能融合多源异构数据,包括实时传感器数据和历史数据,以提高概念模型的准确性。

(4) 自适应参数调整。概念模型能根据不同应用场景支持自适应调整参数设置,以提高概念模型在不同环境下的适用性。

(5) 迭代优化决策。结合虚拟仿真与数据分析,支持迭代优化决策,辅助实现生产系统的智能化。

1.2 概念模型架构

本文提出由物理实体、服务实体、数字孪生实体、数据实体和各部分间的连接实体组成的五维数字孪生模型。基于文献,针对智能制造领域特点,提出如图 1 所示概念模型架构。

图 1智能制造数字孪生概念模型架构

(1) 物理实体

物理实体是基础,对智能制造的每一个数字孪生应用场景,可以进一步划分单元级、系统级和复杂系统级等不同粒度层次。例如,整个智能工厂的数字孪生,车间生产线可作为单元级,生产线所在车间可作为系统级,而整个工厂则作为复杂系统级。如果以车间为数字孪生对象,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值