给定一个文本文件,每行是一条股票信息,写程序提取出所有的股票代码

问题:给定一个文本文件,每行是一条股票信息,写程序提取出所有的股票代码。其中,股票代码规则是:6 位数字,
而且以.SH 或者.SZ 结尾。
文件内容示例:
2020-08-08;平安银行(000001.SZ);15.55;2940.00 亿
2020-08-08;恒瑞医药(600276.SH);95.32;4956.50 亿(包括非流通市值)
......
2020-08-08;宁德时代(300750.SZ);205.32;4657 亿
输出:
[‘000001.SZ’,’600276.SH’.......’300750.SZ’]

解答:

import re

# 打开文件并读取所有行
with open('file.txt', 'r') as f:
    lines = f.readlines()

# 定义正则表达式规则
pattern = re.compile(r'\d{6}\.[SZ]{2}')

# 提取所有股票代码
codes = []
for line in lines:
    match = pattern.search(line)
    if match:
        codes.append(match.group())

# 输出所有股票代码
print(codes)

在这个示例代码中,我们首先打开文件并将所有行读入列表。然后,我们定义了一个正则表达式规则来匹配股票代码。接下来,我们使用一个循环遍历所有行,并查找匹配规则的股票代码。最后,我们将所有匹配的股票代码存储在一个列表中并进行输出。

请注意,这里的文件名应该改为您实际的文件名,而不是 'file.txt'。

但是会出现报错:

content = f.readlines()
UnicodeDecodeError: 'gbk' codec can't decode byte 0xa1 in position 21: illegal multibyte sequence

 原因:

这个错误通常是由于文件编码方式与 Python 所使用的编码方式不一致导致的。可以尝试指定文件编码方式,例如:

with open('file.txt', 'r', encoding='utf-8') as f:
    lines = f.readlines()

 所以出现这个问题时,只需

变为

with open('file.txt', 'r',encoding='utf-8') as f:
    lines = f.readlines()

 

 

### 向量序列表达模式 向量序列能够有效地表达复杂的数据模式,尤其当这些数据具备内在的时间或逻辑顺序时。通过将每一个观测值映射成多维空间里的一个点——即一个向量,可以捕捉到单个元素内部以及不同元素间的关联特性。 #### 构建向量序列 对于给定的一组有序对象,比如时间序列中的数值或是文档内的词语,可以通过定义合适的特征函数将其转换为对应的向量表示。如果考虑的是文本分析场景,则可能涉及到利用预训练的语言模型获取词级别的稠密向量;而在处理金融交易记录这类结构化表格型数据集的时候,或许会更倾向于直接采用原始字段作为输入构建稀疏矩阵[^1]。 一旦获得了各个时刻/位置上的个体向量之后,便能自然地形成一条由它们首尾相连构成的轨迹线,在此基础上进一步挖掘潜在的趋势变化规律就变得可行了。例如,在股票市场走势预测任务里,我们可以基于历史价格波动情况构造一系列反映资产价值动态演变历程的价格变动率向量,并以此为基础建立回归模型来进行未来趋势外推[^4]。 ```python import numpy as np def create_vector_sequence(data_points, feature_extractor): """ 将一组数据点转化为相应的向量序列 参数: data_points (list): 输入的数据集合 feature_extractor (function): 提取每条记录特性的方法 返回: list of vectors: 转换后的向量序列 """ vector_seq = [] for point in data_points: vec = feature_extractor(point) vector_seq.append(vec) return vector_seq # 定义简单特征提取器用于演示目的 def simple_feature_extract(item): """假设item是一个字典""" features = [ item['value'], # 数值本身 item.get('volume', 0), # 成交量,默认为零 int(item['timestamp'].hour >= 9 and item['timestamp'].hour < 18) # 是否处于工作时间段内 ] return np.array(features) data_samples = [{'value': 123.45, 'volume': 1000, 'timestamp': datetime.datetime.now()}, {'value': 124.67, 'volume': 1200, 'timestamp': datetime.datetime.now()}] vector_series = create_vector_sequence(data_samples, simple_feature_extract) print(vector_series) ``` 此代码片段展示了如何创建自定义特征抽取机制并应用于具体实例之上得到最终所需的向量序列。这里选取了一些基本属性组合而成低纬度表征方式供参考说明之用,实际应用当中往往需要依据领域专业知识精心设计更加精细复杂的编码方案以充分揭示隐藏于背后的真实联系[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jakeonil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值