医学图像分类
文章平均质量分 77
寸先生的牛马庄园
专注AI,热爱文学
展开
-
【论文阅读笔记】MGIML: Cancer Grading with Incomplete Radiology-Pathology Data via Memory Learning and Gradi
本文提出了一个新的框架,名为MGIML,用于处理不完整的放射学-病理学数据进行癌症分级。主要创新在于利用记忆学习和梯度均衡化来处理数据的不完整性问题。具体来说,论文介绍了两个关键方案:记忆驱动的异质模态补全(MH-Complete)和旋转驱动的梯度均衡化(RG-Homogenize)。这些方法旨在提高模型在处理不完整数据时的性能,通过记录和阅读跨模态记忆来补充丢失的模态信息,同时优化梯度方向和大小的冲突,以提高癌症分级的准确性和效率。原创 2024-01-23 17:21:46 · 1254 阅读 · 1 评论 -
【论文阅读笔记】Cross-modality Guidance-aided Multi-modal Learning with Dual Attention for MRI Brain Tumo
在BraTS2018和BraTS2019数据集上,该方法展现出优越性能,超越了单模态方法和多种最新的多模态方法,实现了高准确性和鲁棒性的脑肿瘤分级。特点:RMC结合了2D和3D卷积,包括一个包含3D卷积层的主体,一个3D卷积块和三个2D卷积块。特点:利用主要模态的高级别特征和次要模态的低级别特征之间的引导,来强调更具信息性的特征,同时抑制较少信息的特征。根据单模态模型的表现,将模态分为主要模态和次要模态。将其提出的方法与三种基本的多模态融合方法以及两种现有的MRI多模态分类方法进行了比较。原创 2024-01-19 11:34:56 · 690 阅读 · 2 评论 -
【论文阅读笔记】MedTransformer: Accurate AD Diagnosis for 3D MRI Images through 2D Vision Transformers
这个架构主要由四个部分组成:跨视图的自注意力编码器(Self-Attention Encoders, SAE)、特定维度的自注意力编码器(Dimension-specific Self-Attention Encoders, DS-AE)、维度内交叉注意力编码器(Intra-dimension Cross-Attention Encoders, IntraCAE)和维度间交叉注意力编码器(Inter-dimension Cross-Attention Encoders, InterCAE)。原创 2024-01-16 10:22:13 · 549 阅读 · 1 评论