Keras
寸先生的牛马庄园
专注AI,热爱文学
展开
-
[LSTM学习笔记1]LSTM数据准备
本系列笔记是学习《Long Short Term Memory Networks with Python》时练习和记录,该书主要针对各种LSTM网络使用keras进行实现,我可以将自己码的Jupyter notebook代码和笔记分享。一.Prepare Numeric Data缩放数据通常有两种方式:normalizaiton和standardization,都可以使用sc...原创 2019-02-15 16:36:05 · 1891 阅读 · 1 评论 -
Anaconda中构建深度学习开发环境记录(Win10下测试)
有人问我Win10下深度学习环境的构建,个人觉得应该和Win7差不多,但出于负责还是亲自尝试记录一下。下面所说的命令都是亲测可用的。我的平台是:Python3.6(Anaconda4.3)+CUDA10.0+windows10,提前去NVIDIA官网下载CUDA和cuDNN,配置见我的另一篇博客,这里不再赘述设置源2019年6月5日Anaconda清华源又恢复使用了,很好!!在anna...原创 2019-06-22 16:32:29 · 1690 阅读 · 0 评论 -
【论文阅读笔记】HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs
论文地址:https://arxiv.org/abs/1903.04120 本文是CVPR2019上发表的一篇文章,文章主要设计了新的滤波器结构,在大幅减少FLOPS的前提下还能保证延迟和准确性。 文章将现有的卷积过滤器大致分为三类:1)深度方面的卷积过滤器,用于执行逐深度的卷积(DWC)2)点方面的卷积过滤器,用于执行逐点卷积(PWC)3)分组方面的卷积...原创 2019-03-19 15:15:41 · 3221 阅读 · 3 评论 -
[LSTM学习笔记9]How to Develop Generative LSTMs
一.生成模型概述LSTM可以被用于生成模型,如Language Modeling:给定一个序列的大型语料库,用于生成风格类似的输出序列,常被用于文本生成,具体可以参看论文:Generaing Text with Recurrent Neural Networks,2011Generaing Sequence with Recurrent Neural Networks,2013二.以形...原创 2019-02-20 17:47:15 · 342 阅读 · 0 评论 -
[LSTM学习笔记8]How to Develop Bidirectional LSTMs
一.结构1.概述Bidirectional RNN(BRNN)同时使用正向和反向的序列来进行预测,前提是需要在预测输出前知道完整的输入序列。其结构如图,具体可以参加论文《B idirectional Recurrent Neural Networks》2.实现(1)LSTM层中的参数go_backwards可以用于指定方向性:model = Sequential()model.add...原创 2019-02-20 16:30:47 · 3961 阅读 · 1 评论 -
[LSTM学习笔记7]How to Develop Encoder-Decoder LSTMs
一.结构Encoder-Decoder LSTM是为了解决NLP问题开发的,在统计机器翻译领域展示出强大的性能。这种架构常用于:Machine TranslationLearning to ExecuteConversational Modeling*Movement Classification示例:model = Sequential()model.add(LSTM(....原创 2019-02-19 17:33:29 · 2914 阅读 · 0 评论 -
[LSTM学习笔记6]How to Develop Stacked CNN LSTMs
一.结构概述CNN LSTM架构使用CNN做为前端提取输入数据的特征,然后结合LSTM进行序列预测,常见的应用如:Activity RecognitionImage DescriptionVideo Description该结构适合的用途为:1.输入数据有空间结构,如2D结构,图片像素,或如句子中的词语,段落或文档等1D结构。2.输入数据有时间结构,如视频中的图片顺序,文本中的词语...原创 2019-02-17 16:14:04 · 1096 阅读 · 0 评论 -
[LSTM学习笔记5]How to Develop Stacked LSTMs
一.Stacked LSTM概述Stacked LSTM是有多个隐藏LSTM层,每个LSTM层有包含多个memory cell的LSTM。这样做的目的时加深网络,从而预测更加复杂的问题。上层的LSTM结构输出一个序列而不是一个单一的值到下一个LSTM结构。在《Speech Recogition with Deep Recurent Neural Network》这篇文章中指出,LSTM层级的堆叠...原创 2019-02-16 17:44:46 · 6540 阅读 · 0 评论 -
[LSTM学习笔记4]How t o Develop Vanilla LSTMs
一.Vanilla LSTM这是在LSTM原始论文中定义的标准的也是最简单的LSTM模型,可以用于解决简单的序列问题,其结构如下图:1.Keras实现model = Sequential() model.add(LSTM(..., input_shape=(...))) model.add(Dense(...))2.实例:Echo Sequence Predition Pr...原创 2019-02-16 16:24:41 · 1847 阅读 · 0 评论 -
[LSTM学习笔记3]Models for Sequence Prediction
1.one-to-one model应用场景如:给定一个词预测下一个词可以使用类似代码:model = Sequential() model.add(LSTM(..., input_shape=(1, ...))) model.add(Dense(1))2.one-to-many model应用场景如:从单张图片预测词语序列,从单个时间预测一系列的观察值图片标记使用CN...原创 2019-02-16 15:38:16 · 1056 阅读 · 0 评论 -
[LSTM学习笔记2]使用Keras开发LSTM
使用Keras开发LSTM可以分为6步:定义模型 编译模型 拟合模型 评估模型 使用模型进行预测1.定义模型(1)主要使用Sequential()类下的LSTM()和Dense(),如:layers = [LSTM(2),Dense(1)] model = Sequential(layers)第一个隐层需要定义输入,输入的维度必须是三维的(samples,time...原创 2019-02-16 11:27:37 · 1867 阅读 · 1 评论 -
Google BERT最全资源收集
本文资源均收集自网络,方便大家研究和使用Google BERT模型BERT论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding论文解读:站在BERT肩膀上的NLP新秀们(PART I)站在BERT肩膀上的NLP新秀们(PART II)如何可视化BERT?BERT相关论文...原创 2019-07-17 18:05:32 · 569 阅读 · 0 评论