一、背景
图像匹配算法主要分为两大类,第一类是近些年发展迅速的立体匹配算法,通过极线矫正与代价计算等方法实现图像特征点的匹配,包括NCC、SSD等全局、半全局代价计算方法等;第二类是较为传统的局部匹配算法,主要通过针对特征点构建特征描述子,通过描述子之间的相似性进行图像特征点的匹配,同时,为了减少图像旋转、物体运动对图像特征点匹配带来的影响,提高局部匹配算法的鲁棒性,确定一个特征点主方向作为不变量,保证特征描述子的旋转不变性变得尤为重要!
二、SIFT算法特征点主方向
可参考以下链接:SIFT算法原理(3)-确定关键点的主方位,构建关键点描述符 - 浮沉沉浮 - 博客园 (cnblogs.com)
三、本文特征点主方向确定原理
(1)以特征点为中心,构建n*n大小的邻域(一般选择在此邻域内构建描述子);
(2)在邻域范围内,对每个像素点的梯度幅值M(h, w),θ(h, w)进行计算,计算公式参考了SIFT算法: