Python-Opencv 实现一种确定特征点描述子主方向的方法(参考SIFT算法)

一、背景

       图像匹配算法主要分为两大类,第一类是近些年发展迅速的立体匹配算法,通过极线矫正与代价计算等方法实现图像特征点的匹配,包括NCC、SSD等全局、半全局代价计算方法等;第二类是较为传统的局部匹配算法,主要通过针对特征点构建特征描述子,通过描述子之间的相似性进行图像特征点的匹配,同时,为了减少图像旋转、物体运动对图像特征点匹配带来的影响,提高局部匹配算法的鲁棒性,确定一个特征点主方向作为不变量,保证特征描述子的旋转不变性变得尤为重要!

二、SIFT算法特征点主方向

可参考以下链接:SIFT算法原理(3)-确定关键点的主方位,构建关键点描述符 - 浮沉沉浮 - 博客园 (cnblogs.com)

三、本文特征点主方向确定原理

(1)以特征点为中心,构建n*n大小的邻域(一般选择在此邻域内构建描述子);

(2)在邻域范围内,对每个像素点的梯度幅值M(h, w),θ(h, w)进行计算,计算公式参考了SIFT算法:
        M(h, w) = \sqrt{(I(h+1, w)-I(h-1, w))^{2} + (I(h, w+1)-I(h, w-1))^{2}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值