0_2_3-卷积层的反向传播-多通道、无padding、步长不为1

numpy实现神经网络系列

工程地址:https://github.com/yizt/numpy_neuron_network

基础知识

0_1-全连接层、损失函数的反向传播

0_2_1-卷积层的反向传播-单通道、无padding、步长1

0_2_2-卷积层的反向传播-多通道、无padding、步长1

0_2_3-卷积层的反向传播-多通道、无padding、步长不为1

0_2_4-卷积层的反向传播-多通道、有padding、步长不为1

0_2_5-池化层的反向传播-MaxPooling、AveragePooling、GlobalAveragePooling、GlobalMaxPooling

0_3-激活函数的反向传播-ReLU、LeakyReLU、PReLU、ELU、SELU

0_4-优化方法-SGD、AdaGrad、RMSProp、Adadelta、Adam

DNN练习

1_1_1-全连接神经网络做线性回归

1_1_2-全连接神经网络做mnist手写数字识别

CNN练习

2_1-numpy卷积层实现

2_2-numpy池化层实现

2_3-numpy-cnn-mnist手写数字识别

本文目录

本文下载地址:0_2_3-卷积层的反向传播-多通道、无padding、步长不为1

依赖知识

a) 熟悉全连接层、损失函数的反向传播

b) 熟悉卷积层的反向传播-单通道、无padding、步长1

c) 熟悉卷积层的反向传播-多通道、无padding、步长1

d) 熟悉以上三点的依赖知识

约定说明

a) l l 代表网络的第l 层, zl z l 代表第 l l 层卷积,zd,i,jl 代表第 l l 层卷积第d 通道 (i,j) ( i , j ) 位置的值; zl z l 的通道数为 Cl C l , 高度和宽度分别为 Hl,W^l H l , W ^ l ( 避 免 与 权 重 相 同 )

b) Wl1,bl1 W l − 1 , b l − 1 代表连接第 l1 l − 1 层和第 l l 层的卷积核权重和偏置; 卷积核的维度为(k1l1,k2l1) ; 卷积核的步长为 (sl11,sl12) ( s 1 l − 1 , s 2 l − 1 )

c) 记损失函数L关于第 l l 层卷积的输出zl 的偏导为 δl=Lzl   (3) δ l = ∂ L ∂ z l       ( 3 )

前向传播

​ 根据以上约定,卷积核权重 Wl1Rkl11×kl12×Cl1×Cl W l − 1 ∈ R k 1 l − 1 × k 2 l − 1 × C l − 1 × C l ,偏置 bl1RCl b l − 1 ∈ R C l ,每个输出通道一个偏置。 则有第 l l 层卷积层,第d个通道输出为:

zld,i,j=c=1Cl1m=0kl111n=0kl121Wl1m,n,c,dzl1c,isl11+m,jsl12+n+bl1di[0,Hl1],j[0,W^l1](4) (4) z d , i , j l = ∑ c = 1 C l − 1 ∑ m = 0 k 1 l − 1 − 1 ∑ n = 0 k 2 l − 1 − 1 W m , n , c , d l − 1 z c , i ⋅ s 1 l − 1 + m , j ⋅ s 2 l − 1 + n l − 1 + b d l − 1 i ∈ [ 0 , H l − 1 ] , j ∈ [ 0 , W ^ l − 1 ]

​ 其中: Hl=(Hl1kl11)/sl11+1;     W^l=(W^l1kl12)/sl12+1 H l = ( H l − 1 − k 1 l − 1 ) / s 1 l − 1 + 1 ;           W ^ l = ( W ^ l − 1 − k 2 l − 1 ) / s 2 l − 1 + 1 ;

反向传播

权重梯度

a) 首先来看损失函数 L L 关于第l1层权重 Wl1 W l − 1 和偏置 bl1 b l − 1 的梯度:

LWl1m,n,c,d=ijLzld,i,jzld,i,jWl1m,n,c,d=ijδld,i,j(Cl1c=1kl111m=0kl121n=0Wl1m,n,c,dzl1c,isl11+m,jsl12+n+bl1d)Wl1m,n,c,d=ijδld,i,jzl1c,isl11+m,jsl12+n//ldWl1m,n,c,d(1)(2)(5) (1) ∂ L ∂ W m , n , c , d l − 1 = ∑ i ∑ j ∂ L ∂ z d , i , j l ∗ ∂ z d , i , j l ∂ W m , n , c , d l − 1 / / l 层 的 d 通 道 每 个 神 经 元 都 有 梯 度 传 给 权 重 W m , n , c , d l − 1 (2) = ∑ i ∑ j δ d , i , j l ∗ ∂ ( ∑ c = 1 C l − 1 ∑ m = 0 k 1 l − 1 − 1 ∑ n = 0 k 2 l − 1 − 1 W m , n , c , d l − 1 z c , i ⋅ s 1 l − 1 + m , j ⋅ s 2 l − 1 + n l − 1 + b d l − 1 ) ∂ W m , n , c , d l − 1 (5) = ∑ i ∑ j δ d , i , j l ∗ z c , i ⋅ s 1 l − 1 + m , j ⋅ s 2 l − 1 + n l − 1

​ 对比公式(5)和单通道中公式(4),可以发现,损失函数 L L 关于第l1层权重 Wl1:,:c,d W : , : c , d l − 1 梯度就是以 δlpadding δ l p a d d i n g (后面会说明它的含义) 为卷积核在 zl1c z c l − 1 上做卷积的结果(这里没有偏置项),单通道对单通道的卷积。

b) 损失函数 L L 关于第l1层偏置 bl1 b l − 1 的梯度同

Lbl1d=ijδld,i,j(6) (6) ∂ L ∂ b d l − 1 = ∑ i ∑ j δ d , i , j l

l-1层梯度

​ 直接从公式推导损失函数关于第 l1 l − 1 层输出的偏导比较难,我们参考转置卷积论文A guide to convolution arithmetic for deep learning 知识,我们以另外一种方式证明; 对于如下的图,上一层为输入的卷积层( 5×5 5 × 5 ) ,用( 3×3 3 × 3 ) 的卷积核以步长为2,做卷积得到下一层卷积大小为 2×2 2 × 2 (图中蓝色的点)。如果我们将输出卷积的每行和每列之间填充步长减一的行列,行列的元素全为0。记卷积层 zl z l 使用这种零填充后的卷积层为 zlpadding z l p a d d i n g 。那么前向过程其实就相当于卷积核,在输入卷积上以不为1的步长卷积后的结果就是 zlpadding z l p a d d i n g

no_padding_strides_transposed

​ 那么反向过程也是一样,相当于翻转后的卷积在相同零填充的 δl δ l 上左卷积的结果,设 δlpadding δ l p a d d i n g δl δ l 的行列分别填充 (sl111,sl121) ( s 1 l − 1 − 1 , s 2 l − 1 − 1 ) 行列零元素后的梯度矩阵。则根据多通道 中的公式(8) 有

δl1c,i,j=d=1Clm=0kl111n=0kl121rot180Wl1m,n,c,dpδlpaddingd,i+m,j+n(8) (8) δ c , i , j l − 1 = ∑ d = 1 C l ∑ m = 0 k 1 l − 1 − 1 ∑ n = 0 k 2 l − 1 − 1 r o t 180 ∘ W m , n , c , d l − 1 p δ d , i + m , j + n l p a d d i n g

​ 其中 pδlpaddingd,i,j p δ d , i , j l p a d d i n g δl δ l 在行列直接插入 (sl111,sl121) ( s 1 l − 1 − 1 , s 2 l − 1 − 1 ) 行列零元素后(即 δlpadding δ l p a d d i n g ),再在元素外围填充高度和宽度为 (kl111,kl121) ( k 1 l − 1 − 1 , k 2 l − 1 − 1 ) 的零元素后的梯度矩阵。

参考

a) A guide to convolution arithmetic for deep learning

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值