3422 (3477) Kaka's Matrix Travels:为什么不用DP?为什么需要拆点?

题目翻译

在每个网格中都有一个非负数的N×N棋盘上,卡卡开始其矩阵行程为SUM =0。对于每次行程,卡卡都将一个车从左上方网格移动到右下方网格,请注意 车只向右或向下移动。 Kaka将数字添加到车队访问的每个网格的SUM中,并将其替换为零。 不难知道,卡卡首次旅行可获得的最高总和。 现在,卡卡(Kaka)想知道在他的第K次旅行之后他可以获得的最大总和是多少。 请注意,在K行进期间SUM是累积的。

思路分析

看到题目很容易想到搜索,搜索TLE很容易扩展到记忆话搜索,只需要记录每一次的路径,然后将最长的那条路全部置为0即可。于是我用了10分钟写完了这道题

#include<iostream>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<string.h>
using namespace std;

#define MAX 55
#define ll long long
#define inf 1e9

ll arr[MAX][MAX], N, K;
ll dp[MAX][MAX];
pair<ll,ll> pre[MAX][MAX];//pre:记录i,j是从哪里来的

ll dfs() {
	memset(dp, 0, sizeof(dp));
	memset(pre, -1, sizeof(pre));
	dp[1][1] = arr[1][1];
	for (ll i = 1; i <= N; i++) {
		for (ll j = 1; j <= N; j++) {
			if (dp[i - 1][j] + arr[i][j] > dp[i][j])//从上边来
				dp[i][j] = dp[i - 1][j] + arr[i][j], pre[i][j] = make_pair(i - 1, j);
			if (dp[i][j - 1] + arr[i][j] > dp[i][j])//从左边来
				dp[i][j] = dp[i][j - 1] + arr[i][j], pre[i][j] = make_pair(i, j - 1);
		}
	}
	return dp[N][N];
}

int main() {
	cin >> N >> K;
	for (ll i = 1; i <= N; i++)for (ll j = 1; j <= N; j++)cin >> arr[i][j];
	ll res = 0;
	
	for (ll i = 0; i < K; i++) {
		res += dfs();
		pair<ll, ll> t(N, N);
		arr[1][1] = 0;
		//从终点到起点,置0
		while (t.first != -1 && t.second != -1) {
			ll m = t.first, n = t.second;
			arr[m][n] = 0;
			t.first = pre[m][n].first, t.second = pre[m][n].second;
		}
	}
	if (K == 0) res = arr[1][1];
	cout << res << endl;
}

好吧完全没写完,DP其实是不能够的,贪心的策略存在着巨大的bug,考虑下面的图:

3 2
0 1 0
2 3 4
5 0 0
第一次取2->3->4
第二次取5
但最优解是
第一次取1->3->4
第二次取2->5

每次贪心的选择最长路径其实往往不能得到最优解。那么应该如何是好?答案是最小费用流基础讲解点这里,网络流的算法可以称之为万金油,只要图建的好,大多问题都解的了,唯一美中不足的一点是最小费用流的spfa,他死了。跑题了

最重要的现在就是如何建图了,我们有三个地方需要考虑:

  • 以何为点?以何为边?
  • 最多走 K K K次,如何限制这个走的次数。如果我们设置各边容量为1(大多数是这样设的),那么就需要每次跑完费用流,将对应的边置0,这与DP无异,我们需要一个更好的方法。
  • 每次走完一个点要把他的费用置为0,也就是再走也不会给 S U M SUM SUM值增加。

直接拿别人题解上的一个图来
在这里插入图片描述
我们先说建图的方法,然后再说为什么一定要这样做,如果不做会怎么样

  • 首先以矩形的每个块为点,将一个点分成两部分,然后点 x , x ′ x,x' x,x之间,有一条花费为cost的边,k-1条花费为0的边(建模经过一次之后清零该位置元素),点到相邻位置的可达点连一条(k,0)的边,转移位置并不需要花费,但是不能经过k次以上,类似的从源点s连一条(k,0)的边到左上角,右下角连一条(k,0)的边到汇点。注意所有花费都取得相反数,这样求的最小花费是最小的负数,我们取相反数即最大的花费了。

如果我们不拆分点,那么可以以边的末尾点的花费作为边的花费来建图:
在这里插入图片描述
乍一看好像也挺合理的,但是请注意,此时我们从2-4之后,2-4确实没有花费不为0的变了,好像4的花费清零了一样,然饿3这里仍然存在去往4的带花费的边,由此可见花费不应该绑定在相邻点的连边上,而应该绑定在点上,点一旦被经过,就清零。如何达到这个目标?其实这就相当于给点加了限制,而网络流处理点的限制一般都会拆点,比如在点上有流量的限制的时候,就需要
在这里插入图片描述
同样的,这里我们也可以拆点,拆成上面那样,就可以将每个点只在第一次经过时有值的事件建模了。

哎,打个费用流调了一个小时,这个速度怎么参加夏令营

#include<iostream>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;

#define MAX 5005
#define ll long long
#define inf 1e10

struct edge {
	ll to, cap, rev, cost;
	edge(ll a = 0, ll b = 0, ll c = 0, ll d = 0) { to = a, cap = b, rev = c, cost = d; }
};

vector<edge> G[MAX];

ll N, K, arr[55][55];
ll vis[MAX], pre1[MAX], pre2[MAX], dist[MAX], maxflow, minCost, minf[MAX];

void addEdge(ll from, ll to, ll cap, ll cost) {
	G[from].push_back(edge(to, cap, G[to].size(), cost));
	G[to].push_back(edge(from, 0, G[from].size() - 1, -cost));
}

ll spfa(ll s, ll t) {
	memset(vis, 0, sizeof(vis));
	for (ll i = 0; i < MAX; i++)dist[i] = inf;
	//fill(dist, dist + MAX, inf);
	queue<ll> q; vis[s] = 1; q.push(s); minf[s] = inf; dist[s] = 0;
	while (!q.empty()) {
		ll id = q.front(); q.pop(); vis[id] = 0;
		for (unsigned i = 0; i < G[id].size(); i++) {
			edge & e = G[id][i];
			if (e.cap > 0 && dist[e.to] > dist[id] + e.cost) {
				dist[e.to] = dist[id] + e.cost;
				pre1[e.to] = id; pre2[e.to] = i;
				minf[e.to] = min(minf[id], e.cap);
				if (!vis[e.to]) {
					q.push(e.to); vis[e.to] = 1;
				}
			}
		}
	}
	return dist[t] != inf;
}

void update(ll s, ll t) {
	ll x = t;
	while (x != s) {
		ll Vid = pre1[x], Eid = pre2[x];
		G[Vid][Eid].cap -= minf[t];
		G[x][G[Vid][Eid].rev].cap += minf[t];
		x = Vid;
	}
	maxflow += minf[t];
	minCost += minf[t] * dist[t];
}

void minCostFlow(ll s, ll t) {
	ll i = 0;
	while (i++ < K) {
		spfa(s, t);
		update(s, t);
	}
}

int main() {
	cin >> N >> K;
	for (ll i = 0; i < N; i++)for (ll j = 0; j < N; j++)cin >> arr[i][j];
	ll s = 0, t = MAX - 1;
	//建图 s:0 t:MAX
	//1-N*N:真实点
	//N*N+1-2N*N:拆分点
	for (ll i = 0; i < N; i++) {
		for (ll j = 0; j < N; j++) {
			ll id = i * N + j + 1;
			addEdge(id, id + N * N, 1, -arr[i][j]);//花费取反
			addEdge(id, id + N * N, K - 1, 0);
			if (j + 1 < N)addEdge(id + N * N, id + 1, K, 0);//从拆分点连向的右侧的原始点
			if (i + 1 < N)addEdge(id + N * N, id + N, K, 0);//从拆分点连向下侧的原始点
		}
	}
	addEdge(s, 1, K, 0); addEdge(2 * N*N, t, K, 0);
	minCostFlow(s, t);
	cout << -minCost << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值